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Abstract: Improving the lifetime and cost-effectiveness of energy 

storage systems depends on exact control of lithium-ion battery 

(LiB) capacity. To estimate LiB discharge capacity, this work uses 

AdaBoost, gradient boost, XGBoost, LightGBM, Catboost, as well 

as ensemble learning among other machine learning models. Mean 

absolute error (the MAE), mean squared error (the MSE), along with 

R-squared values all were used to assess model performance. 

LightGBM had the best results among the models via the lowest 

MAE (0.104) along with MSE (0.018), in addition to the greatest R-

squared value (0.888), therefore proving better prediction accuracy. 

Closely in performance were gradient boosting and XGBoost. The 

success of the combined model implies that including many models 

could improve general forecast accuracy. Furthermore, the impact 

of important parameters, like temperature, cycle index, voltage, as 

well as current, on model predictions was investigated using 

explainable artificial intelligence (XAI, which) techniques more 

especially, SHAP values. Results show that discharge capacity is 

very much influenced by temperature. This paper emphasizes the 

possibilities of machine learning as well XAI in LiB management 

optimization, therefore supporting more sustainable and effective 

energy storage systems. 
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1. Introduction 

 

Lithium-ion batteries (LiBs) are an important energy source for electric cars (EVs) because they 

have a high energy density, are light, don't self-discharge quickly, can be charged quickly, and 

don't need much upkeep [1]. Because of these benefits, LiBs have become the best choice for 

power in many situations, especially as we move toward electric vehicles and more 
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environmentally friendly energy sources. LiBs are an eco-friendly option to cars that use fossil 

fuels [2-5]. They help lower greenhouse gas pollution and total carbon footprints, which makes 

them necessary for green mode of transport and energy storage facilities. Even though LiBs 

have many benefits, they have a big problem: their performance goes down over time. Chemical 

as well as physical factors cause batteries to lose their power over time. Because of this, efficient 

battery management systems (or BMS for need to be created to avoid high costs as well as 

limited repair options. Predicting a state of health (SoH) measure and other battery health 

factors correctly is an important part of managing batteries [6-10]. SoH is an important 

measurement for many uses, like in handheld gadgets, electric vehicles, as well large-scale 

storage of energy, because it shows how a battery is doing now and how much power it can 

hold compared to how it was at first. To guess a battery's remaining useful life (RUL), improve 

performance, and make sure it will last for a long time, you need to know about SoH. SoH 

review is also very important for improving safety, sustainability, along with cost-effectiveness 

in many fields because it checks for changes in capacity, internal resistance, and cycle life [11-

15]. Maintaining range consistency, charging efficiency, as well as general vehicle performance 

therefore depends on SoH assessment. Accurate SoH estimate maximizes energy use, optimizes 

expenditures, and reduces operational risks in grid-scale applications like peak shaving and 

integration of renewable energy [16-18]. Highly intelligent battery management platforms have 

evolved thanks in large part to recent developments in SoH evaluation techniques, especially 

via machine learning (ML) as well as artificial intelligence (AI). These systems include adaptive 

control techniques, predictive maintenance, and real-time monitoring to extend battery life, 

lower early replacements, and improve sustainability via best use of resources and recycling 

activities.  Among the sophisticated methods used to forecast LiB performance are density 

functional theory (DFT) & molecular dynamic forces. By use of atomic and molecule 

interactions inside the battery, molecular dynamics simulations offer light on material 

behaviour under various situations [19-21]. Conversely, DFT helps to compute electronic 

characteristics to forecast how changes in atomic-level parameters affect general battery 

performance. These methods give complete tools for improving battery materials and design 

together with ML-based electrochemical modelling. Recently, XAI, or explainable artificial 

intelligence, has gotten a lot of attention as a way to make predictive models clearer and 

easier to understand.  Traditional machine learning and artificial intelligence-based SoH 

evaluation methods often work as "black boxes," which makes it hard to figure out what factors 

affect estimates of battery degradation.  When XAI methods like Shapley Additive 

Explanations (the SHAP) factors are used together, they help us understand how different 

factors—like temperature, cycle index, the voltage, as well as current affect the battery. This 

lets us make better decisions about how to handle the batteries.  This method makes batteries 

last longer, lowers the cost of upkeep, and improves the way batteries are replaced, which 

reduces the damage to the environment and encourages long-term resource use. 

 The goal of this work is to use ML and XAI to guess how much LiBs can release.  To find 

SoH, we use a number of machine learning methods, such as the principal component analysis 

(a PCA), linear regression, regression with ridges, k-nearest-neighbors algorithm (kNN), 

random forests, polynomial regression, as well as gradient boosting [22-25].  The correctness, 

processing speed, and readability of these models are used to measure how well they work.  

SHAP numbers are also used to figure out how important a trait is, which gives us more 

information about the things that cause batteries to degrade.  Complex models like random 

forest as well gradient boosting are more accurate, but simpler versions like linear regression 

along with kNN, when paired with XAI, make it easier to see how battery health is changing 

over time. The rest of the paper is organized like this:  The tools and methods utilized 

throughout this study are talked about in Section 2.  The results of the experiments and SHAP-

based studies are shown in Section 3.  In Section 4, we talk about the most important results 
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and what they mean. In Section 5, we come to some conclusions and suggest areas for future 

study in the areas of estimating battery SoH and improving energy storage systems. 

 

2. Techniques and Materials: 

 

This part talks about how the study was organized, the dataset that was used, as well as the 

machine learning along with AI techniques that were used. Each method and measure used is 

described in great depth to make sure the study can be repeated and to make the approach 

clearer. There is a lot of talk about the scientific reasons behind choosing each material and 

method. Figure 1 shows a flowchart that shows each stage of building a model using machine 

learning methods like CatBoost, AdaBoost, XGBoost, LightGBM, and adaptive boosting 

(AdaBoost).  

 

 
Figure 1. Flowchart of Model Development 

 

Figure 1 is a diagram that shows in great detail how the training and testing processes worked 

in this study. At every step of the method for developing a model, this outline makes it easy to 
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see what needs to be done and makes sure that the process can be repeated. After the appropriate 

steps for preparation were taken, the training and assessment files were fed into the models. 

The models were judged in the last step. 

2.1. Definition of a Dataset: 

The collection utilised in this study is made up of 45,698 histories that define properties of 

battery release processes. 81% of data was utilised for training as well as 21% was used for 

testing. 48,000 data points were utilized for training & 65,000 data points were utilized for 

testing. To describe how well the batteries in the dataset worked electrically, they needed to 

have "Temperature," "Current (A)," "Voltage (V)," "Cycle Index," and "Discharge Capacity 

(Ah)" fields. The sample utilized by the study came from a large library that had information 

about how battery discharge processes work. In each cycle, different factors that were measured 

while the battery was being discharged were written down. LIB samples were studied for 751 

cycles as part of this work. All the tests for charging and discharging were done between 3.1 V 

and 4.5 V, with different C-rates and temperatures. Nine cells were used in each test setting for 

a total of 193 the cells (Table 1).  

 

Table 1. Conditions of Testing for Samples of Lithium-Ion Batteries 
Temperature (℃) Discharge C-Rate Charge Cut-Off C-Rate 

11 0.8 C C/6 

26 2 C C/41 

46 3 C C/6 

61 2 C C/41 

 

Michael Pecht from the Centre for Advanced Life Cycle Engineering (CALCE), at the 

University of Maryland, supplied all of the open-access data used for the testing. The tests were 

carried out in LiCoO2 (cathode)–graphite (anode) the cells. Machine learning models were then 

trained using the charge as well as discharge information gleaned from these experiments. 

Training came from the initial 301 moves in the dataset; 451 cycles among 302 as well as 751 

were eliminated from the test and training datasets. Data normalisation, outlier identification, 

and missing data management were among the many preparation techniques the dataset 

experienced. 

2.2. Model Choice and Methods for Machine Learning: 

For model training, this work assessed and contrasted machine learning methods including 

AdaBoost, LightGBM, gradient boosting, XGBoost & Catboost.  These procedures were 

chosen depending on their particular qualities and benefits.  The qualities of the dataset and 

intended results determine the strengths and shortcomings of any technique.  Finding the best 

appropriate algorithm for a given dataset depends on comparing and assessing many ones.  

Trained upon the training set, the models were assessed on the test set.  Furthermore, offered to 

understand model predictions and increase openness was the SHAP (Shapley Additive 

Explanations), the XAI technique. 

Simulations of Boosting Algorithms in Mathematics: 

Iteratively reducing loss functions helps boosting algorithms to enhance poor learners.  

Generally, the boosting loss function is provided by: 

L(y, f(x)) = ∑ (yi − f(xi))2
n

i=1
        (1) 

where yi is the real discharge capacity, f(xi) is the value that was forecast, as well as nn is the 

total number of examples. Weak learner ht(x) receives training to reduce residual error for 

every boosting iteration: 

ri = yi − ft−1(xi)     (2) and revised approach is 

 ft(x) = ft−1(x) + αht(x)   (3) where α is the rate of learning. 
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3. Results of Experiments: 

 

The performance of the investigated algorithms is assessed in this part along with comparative 

analysis and discussion of each model's prediction success upon the State of Health (SoH) of 

Lithium-ion Batteries (LiBs). Furthermore, examined is the effect of the SHAP approach on 

decision-making and model predictions interpretation. 

3.1. Evaluation Metrics for Models: 

Standard regression measures mean squared error (the MSE), the mean absolute error (the 

MAE), as well as R-squared (R²) were used to evaluate the models. These measures evaluate 

model predictions' correctness with respect to real values. 

• Mean Squared Error (MSE): 

MSE =
1

N
∑(Yi − Ŷi)

2               (4)

N

i=1

 

The model works better when the MSE is smaller. 

• R-squared (R²): 

R2 = 1 −
∑ (Ŷi − Yi)

2N
i=1

∑ (Yi − Y̅)2N
i=1

            (5) 

An R² score close to 1 means the model fits most of the variation in the dataset. 

• Mean Absolute Error (MAE): 

MAE =
1

N
∑|Yi − Ŷi|

N

i=1

             (6) 

A lower MAE indicates improved prediction capability. 

3.2. Training Models: 

Five ensembles learning techniques AdaBoost, gradient boost, XGBoost, LightGBM, as well 

as Catboost were used.  Bringing together ineffective learners into an effective predictive model 

helps these techniques improve prediction accuracy. 

3.3. Comparative Results for Models: 

 

Table 2 shows the performance measures for every model. 
Models MAE MSE R2 

AdaBoost 0.135 0.042 0.764 

Gradient Boosting 0.109 0.024 0.865 

XGBoost 0.111 0.024 0.865 

LightGBM 0.104 0.020 0.888 

CatBoost 0.105 0.021 0.882 

 

With an MAE of 0.104, the MSE of 0.020, as well as R² of 0.888 the LightGBM model had the 

best performance. 

3.4. Results of the Ensemble Learning Model: 

Combining forecasts to gradient boosters such as XGBoost, AdaBoost, LightGBM, as well as 

Catboost, a voting-based model for regression (VotingRegressor) was developed. (Table 3) 

 

Table 3. Voting-based Model for Regression 
Model MAE MSE R2 

VotingRegressor 0.106 0.021 0.885 

 

 

LightGBM stayed better even though the combined model did fairly. 
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Figure 2 offers a comparison of real and ensemble learning model prediction values. The chart 

in Figure 2 shows that numerous forecasts the cluster within the line, suggesting that, in most 

situations, the model could provide predictions near to the real values.  

 

 
Figure 2. Predicted and Actual Ensemble Model 

 

3.5. Analysis of Explainability in AI Models: 

The LightGBM model was examined using the SHAP approach in order to find feature 

influence on forecasts. (Table 4) 

 

Table 4. Feature Significance Depends on SHAP Values 
Feature SHAP Value Contribution 

Temperature +0.18 

Current (A) +0.11 

Cycle Index -0.08 

Voltage (V) -0.02 

 

While Cycle Index significantly impacted the model's forecasts, temperature had the most 

favourable effect. The line showing the average absolute values for SHAP can be seen in Figure 

3. 

 

 
Figure 3. SHAP Values Help Us Interpret LightGBM Model Decisions 
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3.6. Mathematical Modelling:  

The performance of the model was validated by means of a simulation under many scenarios. 

• Gradient Boosting Optimization: 

Fm(x) = Fm−1(x) + γmhm(x)             (7) 

• LightGBM Growth Strategy: 

Scoresplit =
(Gradient)2

Hessian + λ
            (8)       

Final Verification of Accuracy: 

• Various discharge capacities were tested against model residual errors.  

• Examined were temperature fluctuations in relation to SoH forecasts.  

With the lowest error rates, LightGBM proved better in estimating LiBs' SoH. With 

Temperature as the most important element, the SHAP study gave important new understanding 

of feature relevance. Future research might look at other optimization strategies to raise 

prediction accuracy even further. 

 

4. Discussion: 

 

4.1. LiB Performance Management: An Introduction to Machine Learning: 

Forecasting lithium-ion battery (LiB) management for performance in EVs (electric vehicles) 

utilizing machine learning (ML) approaches has made notable advancement recently. ML 

models have been shown in many studies to be successful in approximating important battery 

metrics like terminal voltage, capacity, state of charge (SoC), and residual usable life (RUL). 

4.2. Methodological Comparisons and Insights for SoC Estimation ML Algorithues: 

Six ML techniques are evaluated for LiB SoC estimation: 

• Artificial Neural Networks (ANN) 

• Support Vector Machines (SVM) 

• Linear Regression (LR) 

• Gaussian Process Regression (GPR) 

• Ensemble Boosting Algorithm A (EBa) 

• Ensemble Boosting Algorithm B (EBo) 

 

Table 5. ML Algorithms for SoC Estimation 
ML Algorithm Performance Metrics (SoC Estimation) 

ANN 85% MAE Accuracy 

GPR High accuracy in capturing battery patterns 

SVM, LR, EBa, EBo Performed lower compared to ANN and GPR 

 

4.2.1. Estimates of Voltage and Capacity: 

Using historical data and WLTP discharge testing on an NMC cell, trained boosted tree models. 

Results show that boosted trees did quite well in cell voltage prediction. Enhanced SoC 

forecasts via a direct multistep-ahead forecasting system. Suggested a Multioutput Convolved 

Gaussian-Process (MCGP) models verified using experimental data. Enhanced LiB capacity 

estimation accuracy. Improved the battery cell RUL prediction.  

4.3. A SHAP-based XAI method for predicting LiB performance: 

One of the clear gaps in current studies is the LiB prediction model application of explainable 

artificial intelligence (XAI) methods. This work makes a major contribution by using SHapley 

Additive exPlanations (the SHAP method) to: • Explanation of feature influence LiB 

performance forecasts. • Boost ML models' interpretability. • Boost capacity's and SoC's 

predictive accuracy. Figure 4 shows the SHAP-Based XAI Methodology. 
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Figure 4. SHAP-Based XAI Methodology 

 

4.3.1. Strategic Views and Connotations for Systems of Battery Management:  

Results of this work show: ANN and GPR show their capacity in capturing battery actions 

because they outperform other ML methods in SoC estimate. SHAP values help to better 

manage LiB by offering strategic understanding of feature relevance. XAI approaches help to 

maximize battery management, therefore guaranteeing more effective energy use in electric 

vehicles. By combining SHAP-based XAI techniques with ML models, this work makes the 

area of LiB management of performance better. Being able to understand what models are 

saying makes battery optimization techniques a lot stronger. This results in more sustainable 

and effective energy management in electric vehicles. 

 

5. Conclusion: 

 

This work assessed performance of many ML models in forecasting ability to discharge of 

lithium-ion batteries, with LightGBM showing to be the best-performance model. Using SHAP-

based explainable artificial intelligence (XAI) gave important new understanding of how 

voltage, cycle index, temperature, and current affect battery performance. Although ML models 

show great predictive power, actual application poses difficulties like computational 

complexity as well as real-time data processing. Future developments should concentrate on 

improving their flexibility and efficiency by integrating machine learning algorithms into 

current surveillance systems for electrically powered vehicles as well energy grids. Minimizing 

environmental effect and promoting a circular economy depend on LiBs' sustainability via 

responsible recycling along with secondary usage also. This work advances more dependable 

and sustainable battery administration techniques by enhancing prediction models and 

including XAI.  
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