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Abstract: This study investigates the performance of different 

optimization algorithms within Transfer Learning for weed image 

analysis. Utilizing pre-trained Convolutional Neural Networks (CNNs), 

we compare Adam, SGD, and RMSprop optimizers for fine-tuning, 

aiming to enhance weed classification accuracy with limited data. The 

research evaluates each optimizer's impact on model convergence, 

accuracy, and robustness across diverse datasets. Experiments, conducted 

using MATLAB R2020a, employ the AlexNet architecture and a dataset 

of farming images from the Vidarbha region, Maharashtra, India. Results 

highlight significant variations in performance based on optimizer 

selection, demonstrating the critical role of optimization in achieving 

efficient and effective weed image analysis. This comparative analysis 

provides valuable insights for researchers and practitioners seeking 

optimal optimizer choices in Transfer Learning applications for 

agricultural image processing. 
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1. Introduction 

 

The relentless pursuit of sustainable and efficient agricultural practices has positioned precision 

agriculture as a cornerstone of modern farming. This paradigm shift emphasizes data-driven decision-

making, leveraging advanced technologies to optimize resource allocation and minimize environmental 

impact. At the forefront of this technological revolution lies the integration of artificial intelligence (AI), 

particularly deep learning, for tasks such as automated weed detection and classification. Weeds, 

ubiquitous adversaries in agricultural landscapes, pose a significant threat to crop yields, competing for 

essential resources like sunlight, water, and nutrients. Traditional weed management strategies, reliant 

on manual labor and indiscriminate herbicide application, are often inefficient and environmentally 

detrimental. Consequently, the development of robust and automated weed recognition systems is 

paramount for achieving sustainable and productive agriculture. 

Convolutional Neural Networks (CNNs), a class of deep learning models, have demonstrated 

exceptional capabilities in image recognition and analysis. Their hierarchical architecture, designed to 

extract intricate features from visual data, makes them particularly well-suited for agricultural 

applications. However, training CNNs from scratch requires vast amounts of labeled data, a resource 

often scarce in specialized domains like weed image analysis. The acquisition of diverse and 

comprehensive weed image datasets, encompassing various weed species, growth stages, and 

environmental conditions, is a labor-intensive and costly endeavor. This data scarcity poses a significant 

challenge to the development of effective weed recognition systems. 

Transfer Learning has emerged as a powerful technique to address the limitations of data scarcity. By 

leveraging pre-trained CNN models, trained on large-scale datasets like ImageNet, Transfer Learning 

enables the adaptation of these models to new, related tasks with limited data. This approach capitalizes 

on the general feature extraction capabilities learned by the pre-trained models, allowing them to be 

fine-tuned for specific applications, such as weed image recognition. In agricultural contexts, Transfer 
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Learning offers a pathway to develop accurate and efficient weed detection systems without the need 

for extensive data collection. 

The success of Transfer Learning hinges on several critical factors, including the selection of an 

appropriate pre-trained model, the design of the fine-tuning strategy, and, crucially, the choice of an 

optimizer. Optimizers are algorithms that govern the learning process, dictating how the model's weights 

are adjusted during training to minimize the loss function. The selection of an optimizer significantly 

impacts the convergence speed, generalization performance, and overall accuracy of the trained model. 

In the context of weed image analysis, where subtle variations in weed species and environmental 

conditions can pose challenges, the choice of an optimizer becomes particularly critical. 

Commonly employed optimizers in deep learning include Stochastic Gradient Descent (SGD), Adaptive 

Moment Estimation (Adam), and Root Mean Square Propagation (RMSprop). SGD, a foundational 

optimization algorithm, updates weights based on the gradient of the loss function calculated on a subset 

of the training data. While effective, SGD can suffer from slow convergence and sensitivity to learning 

rate selection. Adam, an adaptive learning rate optimizer, combines the advantages of RMSprop and 

momentum, often leading to faster convergence and improved performance. RMSprop, another adaptive 

learning rate algorithm, addresses the challenges of vanishing and exploding gradients, making it 

suitable for complex datasets. 

The comparative analysis of these optimizers within a Transfer Learning framework for weed image 

recognition is crucial for identifying the most effective approach. The performance of each optimizer 

can vary depending on the specific characteristics of the dataset, the architecture of the pre-trained 

model, and the fine-tuning strategy employed. This necessitates a systematic and rigorous benchmarking 

study to evaluate the performance of different optimizers and determine the optimal choice for weed 

image analysis. 

This study aims to provide practical insights into the impact of optimizers on Transfer Learning models 

for weed image analysis, focusing on improving accuracy, convergence speed, and robustness. Through 

experimentation, we seek to understand how optimizers like Adam, SGD, and RMSprop influence the 

performance of fine-tuned CNNs in weed classification. The goal is to advance deep learning 

applications in precision agriculture, leading to better weed management and increased crop yields. By 

conducting a comparative analysis, we aim to identify the most effective optimizer(s) for this specific 

agricultural domain. This research highlights the critical role of optimizer selection in optimizing model 

performance, ultimately contributing to more efficient and accurate weed identification. The findings 

will assist researchers and practitioners in choosing suitable optimizers for their weed image analysis 

tasks, thereby enhancing the applicability of deep learning in modern agricultural practices. 

 

2. Literature Review  

 

Precision agriculture is vital for sustainable food production, balancing yield with reduced chemical use. 

Optimization techniques, like Adam, SGD with momentum, and RMSprop, significantly impact 

Convolutional Neural Network (CNN) training performance. Identifying yield-reducing factors, such as 

weeds, is crucial in precision farming. This study focuses on comparing these optimizers for weed image 

analysis, maintaining consistent learning rates and training durations during Deep Neural Network 

training. This ensures a fair assessment of each optimizer's effectiveness in processing agricultural 

imagery, contributing to improved weed detection and sustainable farming practices [1-2]. 

Artificial Intelligence (AI) is transforming agriculture by optimizing planting, harvesting, and 

maintenance, thereby increasing yields and reducing costs. It is a cornerstone of precision agriculture, 

enabling targeted interventions and sustainable practices. Precision agriculture is crucial for ensuring 

food security while minimizing environmental impact by reducing chemical usage [3-4]. A key 

component is identifying yield-reducing factors, notably weeds, which pose a significant threat to crops. 

Weeds compete for resources, hinder growth, and spread diseases, leading to substantial yield losses, 

potentially 20% to 80%, if not managed promptly. Early weed detection through AI-driven image 

analysis allows for timely intervention, reducing the reliance on harmful pesticides. This proactive 

approach to weed management is essential for sustainable agriculture, ensuring both productivity and 

environmental health [5]. 

Transfer Learning is a powerful computer vision technique, repurposing pre-trained models for new 

tasks with limited labeled data. This is especially beneficial in agriculture, particularly for weed 

detection, where large, diverse datasets are challenging and costly to obtain. By using Transfer Learning, 
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researchers can exploit knowledge from models trained on massive datasets like ImageNet [6-8]. This 

allows for efficient adaptation to specific agricultural needs, such as accurate weed identification. This 

approach significantly reduces the need for extensive new data collection, speeding up the development 

of practical agricultural AI solutions [9]. 

Convolutional Neural Networks (CNNs), a type of deep learning architecture, excel at processing two-

dimensional data like images, finding applications in diverse fields, including recommendation systems 

and medical imaging. In agriculture, CNNs are vital for tasks like weed detection. A CNN's structure is 

built upon two core components: feature learning and classification. Feature learning involves multiple 

layers of convolutions, pooling, and activation functions, designed to extract relevant image features 

[10-12]. The classification stage then utilizes flattened and fully connected layers, culminating in a 

Softmax function for output categorization. Convolution, a key technique, employs kernels or filters—

small, odd-dimension matrices—to detect features within an image. These filters identify the presence 

of features rather than their precise location. For instance, in facial recognition, CNNs focus on 

recognizing the general area of eyes, rather than specific pixel coordinates. This approach enables CNNs 

to effectively learn and recognize patterns in images, making them a powerful tool for image analysis 

in agriculture and beyond [13-15].  

The effectiveness of Transfer Learning heavily relies on the choice of an optimizer, a fundamental 

component in neural network training. Optimizers are crucial as they govern how the network's weights 

are updated during the training process. This directly impacts the speed at which the model learns, its 

ability to generalize to unseen data, and consequently, its overall performance. In the specific context of 

weed image analysis, selecting a suitable optimizer is particularly significant [16]. The right optimizer 

can dramatically improve the efficiency and accuracy of weed classification. Different optimizers 

possess unique characteristics that dictate how they navigate the complex landscape of weight 

adjustments, influencing the model's ability to learn intricate patterns from agricultural imagery. 

Therefore, a careful evaluation and selection of the optimizer is paramount for achieving optimal results 

in weed identification using Transfer Learning [17-19]. 

The application of deep learning, specifically Convolutional Neural Networks (CNNs), in agricultural 

image analysis has witnessed a surge in recent years, driven by the need for automated and efficient 

solutions.1 Researchers have explored various facets of CNNs, including architectural design, data 

augmentation techniques, and optimization strategies, to enhance the accuracy and robustness of 

agricultural image recognition systems. 

A. Transfer Learning in Agricultural Contexts: 

Transfer Learning has emerged as a pivotal technique in agricultural image analysis, particularly for 

tasks involving limited labeled data. Several studies have demonstrated the efficacy of fine-tuning pre-

trained CNN models for tasks such as plant disease detection [17-19], crop yield prediction, and weed 

identification. The work of [17] showcased the successful application of Transfer Learning using 

ImageNet pre-trained models for classifying plant diseases, highlighting the significant performance 

gains achieved compared to training models from scratch. Similar studies [18, 19] have further validated 

the effectiveness of Transfer Learning in adapting pre-trained models to specific agricultural datasets, 

emphasizing the importance of domain adaptation and fine-tuning strategies. 

B. Weed Image Analysis using Deep Learning: 

Weed detection and classification have become a prominent area of research within agricultural image 

analysis. Deep learning models, particularly CNNs, have demonstrated remarkable capabilities in 

accurately identifying and classifying various weed species. The use of deep learning has shown 

significant improvement over traditional image processing techniques. Studies [11-14] have shown the 

efficacy of CNNs in weed detection. Research has shown that the architectural design of CNNs, 

including the number of convolutional layers, pooling layers, and activation functions, plays a crucial 

role in the feature extraction process [11, 13]. Additionally, the choice of data augmentation techniques, 

such as rotation, scaling, and flipping, can significantly enhance the model's robustness and 

generalization capabilities [14]. 

C. Optimization Algorithms in Deep Learning:  

The selection of an appropriate optimization algorithm is critical for the effective training of deep 

learning models. Researchers have explored various optimization techniques, including Stochastic 

Gradient Descent (SGD), Adaptive Moment Estimation (Adam), and Root Mean Square Propagation 

(RMSprop), to optimize the learning process [19-21]. 
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• Stochastic Gradient Descent (SGD): SGD, a foundational optimization algorithm, has been 

widely used in deep learning. However, its slow convergence and sensitivity to learning rate selection 

have prompted researchers to explore alternative optimization techniques [19]. 

• Adaptive Moment Estimation (Adam): Adam, an adaptive learning rate optimizer, has gained 

popularity due to its fast convergence and robustness to learning rate variations. Studies have shown 

that Adam often outperforms SGD in various image recognition tasks [20]. 

• Root Mean Square Propagation (RMSprop): RMSprop, another adaptive learning rate 

algorithm, has been effective in addressing the challenges of vanishing and exploding gradients. 

Research has indicated that RMSprop can achieve competitive performance compared to Adam in 

certain scenarios [21]. 

D. Comparative Studies of Optimizers: 

Several studies have conducted comparative analyses of optimization algorithms in deep learning. These 

studies have highlighted the impact of optimizer selection on model convergence, accuracy, and 

generalization performance. For instance, [15-18] compared the performance of SGDM, RMSPROP 

and Adam on various datasets, showcasing the strengths and weaknesses of each optimizer. The research 

found that the optimal optimizer choice can vary depending on the specific characteristics of the dataset 

and the model architecture. 

 

3. Research Methodology  

 

This research employs a rigorous experimental methodology to evaluate and compare the performance 

of various optimization algorithms within the context of Transfer Learning for automated weed image 

recognition. The core objective is to determine the optimal optimizer for fine-tuning pre-trained 

Convolutional Neural Networks (CNNs) in classifying soybean weeds, specifically focusing on the 

impact of optimizer choice on training efficiency, accuracy, and generalization. 

A. Dataset Acquisition and Preparation: 

The study utilizes a custom dataset of soybean weed images collected from diverse agricultural regions 

within the Vidarbha region of Maharashtra, India. This regional specificity ensures that the dataset 

reflects the environmental and weed species prevalent in the target area. The dataset encompasses a 

variety of soybean weed species at different growth stages, captured under varying lighting and 

environmental conditions. 

The dataset is meticulously curated and pre-processed to enhance model performance. This process 

involves: 

• Image Resizing: All images are resized to a consistent resolution to ensure compatibility with 

the AlexNet architecture and to standardize input dimensions. 

• Data Augmentation: To increase the dataset's diversity and robustness, data augmentation 

techniques are employed. This includes random rotations, flips, zooms, and brightness adjustments. 

These augmentations help the model generalize better to unseen images and reduce overfitting. 

• Dataset Partitioning: The dataset is divided into three distinct subsets: training, validation, and 

testing. The training set is used to train the model, the validation set is used to monitor performance 

during training and tune hyperparameters, and the testing set is used for final performance evaluation. 

B. Transfer Learning Implementation: 

This study leverages Transfer Learning, a technique that reuses a pre-trained model for a new, related 

task. Specifically, the AlexNet architecture, pre-trained on the ImageNet dataset, is utilized as the base 

model. AlexNet, a well-established CNN, has demonstrated strong feature extraction capabilities, 

making it suitable for agricultural image classification. 

The Transfer Learning process involves the following steps: 

• Model Loading: The pre-trained AlexNet model is loaded into the MATLAB R2020a 

environment. 

• Layer Modification: The final classification layer of AlexNet, which is trained for ImageNet's 

1000 classes, is replaced with a new classification layer tailored to the soybean weed species present in 

the custom dataset. 

• Fine-Tuning: The pre-trained model is fine-tuned using the prepared soybean weed image 

dataset. This involves updating the model's weights to adapt to the specific characteristics of the weed 

images. 
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C. Optimization Algorithm Selection and Parameter Tuning: 

This research focuses on comparing the performance of three widely used optimization algorithms: 

• Stochastic Gradient Descent with Momentum (SGDM): A classic optimization algorithm that 

incorporates momentum to accelerate convergence. 

• Adaptive Moment Estimation (Adam): An adaptive learning rate optimization algorithm that 

combines the benefits of RMSprop and momentum. 

• Root Mean Square Propagation (RMSprop): An adaptive learning rate optimization algorithm 

that addresses the challenges of vanishing and exploding gradients. 

To ensure a fair comparison, a controlled parameter tuning process is implemented. The study 

systematically varies two key hyperparameters: 

• Batch Size: The batch size determines the number of images processed in each training iteration. 

The study explores batch sizes ranging from 5 to 100. 

• Learning Rate: The learning rate controls the step size taken during weight updates. The study 

investigates learning rates ranging from 0.001 to 0.003. 

For each optimizer, multiple training runs are conducted with different combinations of batch sizes and 

learning rates. The validation set is used to monitor the model's performance during training and select 

the optimal parameter configuration for each optimizer. 

D. Training and Evaluation Process: 

The AlexNet network is trained using the prepared dataset and the selected optimization algorithms. The 

training process is carried out in the MATLAB R2020a environment, which provides a robust platform 

for deep learning experiments. 

The performance of each optimizer is evaluated based on the following metrics: 

• Training Time: The time required to train the model to convergence. This metric assesses the 

efficiency of each optimizer. 

• Training and Testing Loss: The loss function's value during training and testing, indicating the 

model's ability to minimize errors. 

• Classification Accuracy: The percentage of correctly classified weed images in the testing set. 

This metric measures the model's overall performance. 

• Classification Time per Image: The time taken by the trained model to classify a single test 

image. This metric assesses the model's speed and efficiency in real-time applications. 

• Convergence Speed: The number of epochs required for the model to reach a stable level of 

performance. 

• Robustness: The performance of the model across various dataset conditions. 

The training and testing loss values are monitored across epochs to assess the model's learning progress 

and identify potential overfitting. The classification accuracy and classification time per image are 

evaluated on the held-out testing set to provide an unbiased estimate of the model's performance on 

unseen data. 

E. Comparative Analysis and Results Visualization: 

The experimental results are analyzed to compare the performance of the different optimization 

algorithms. The training time, training and testing loss values, classification accuracy, and classification 

time per image are presented graphically to facilitate visual comparison. 

The comparative analysis aims to identify the optimizer that achieves the highest classification accuracy, 

fastest convergence, and best overall performance. The study also investigates the impact of batch size 

and learning rate on the performance of each optimizer. 

F. Flowchart and Experimental Setup: 

A detailed flowchart is created to illustrate the complete experimental process, from dataset preparation 

to performance evaluation. This flowchart provides a clear visual representation of the research 

methodology. The experimental setup, including the hardware and software configurations, is 

documented to ensure reproducibility. 
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Figure 1: Flowchart 

 

G. Justification of Methods: 

The choice of AlexNet as the base model is justified by its proven performance in image classification 

tasks and its availability in MATLAB's pre-trained model library. The selection of SGDM, Adam, and 

RMSprop is based on their widespread use and established performance in deep learning optimization. 

The range of batch sizes and learning rates is chosen to cover a diverse set of parameter configurations. 

The use of MATLAB R2020a is justified by its comprehensive deep learning toolbox and its suitability 

for research and development. The custom dataset is carefully curated to reflect the specific 

characteristics of the target agricultural environment. 

This detailed research methodology provides a comprehensive framework for evaluating and comparing 

the performance of optimization algorithms in Transfer Learning for automated weed image recognition. 

The findings of this study will contribute to the development of more efficient and accurate weed 

detection systems, ultimately enhancing precision agriculture practices.  

 

4. Results and Discussion 

 

For this research, the pre-trained AlexNet model was utilized and adapted through Transfer Learning to 

classify crop and weed images. A dataset of 3360 images, specifically gathered from the Vidarbha 

region, was meticulously labeled to ensure accurate categorization. The primary objective was to 

investigate how variations in the base learning rate affected the training process and the final 

classification accuracy. To achieve this, diverse training parameters were configured, and the impact of 

altering the learning rate on the network's training progression was carefully monitored and recorded. 

The image dataset, representative of real-world agricultural scenarios, was collected through direct visits 

to farming locations across Maharashtra. A sample image from this collection is provided in Figure 2, 

illustrating the type of data used in this study. This approach allowed for a focused examination of 

learning rate influence on model performance in an agricultural context.  
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Figure 2 : Images Datasets 

 

This study assessed the performance of various optimization algorithms—SGDM, Adam, and 

RMSprop—by conducting training experiments using the pre-trained AlexNet network. Data, 

encompassing training and validation loss, classification accuracy, convergence speed, and training 

time, were systematically collected for each optimizer. These metrics were derived from the iterative 

fine-tuning process, where Transfer Learning was employed to adapt the AlexNet network, depicted in 

Figure 3, for weed image classification. Figure 3 visually represents the AlexNet architecture used, 

highlighting the layers and connections relevant to image processing and classification. The data 

gathered from these training runs enabled a comparative analysis, determining the effectiveness of each 

optimizer in the context of weed image categorization. This approach aimed to identify the optimal 

optimization algorithm for enhancing weed classification accuracy and efficiency.  

  

Optimization Using RMSprop 

S.N 

Base 

Learnin

g Rate 

Validation 

Accuracy 

1 0.001 14.29% 

2 0.002 14.29% 

3 0.003 14.29% 
 

 
Figure 3:- Validation Accuracy using RmsProp Optimizer 

 

Figure 3 visually represents the validation accuracy achieved when training the pre-trained AlexNet 

using the RMSProp optimizer. Across different base learning rates—0.001, 0.002, and 0.003—the 

validation accuracy remained consistently at 14.29%. This indicates that, within the tested range, 

varying the learning rate did not influence the model's validation accuracy when RMSProp was 

employed. Essentially, the model's ability to accurately classify validation data did not improve with 

changes in the learning rate. Figure 4 further details these validation accuracy fluctuations, providing a 

graphical representation of the stable performance observed despite alterations in the RMSProp 

optimizer's learning rate. This demonstrates the consistency of the model's performance under these 

specific training conditions.  

 

Validation  Accuracy
using RMSprop

Base Learning Rate

14.29%

0.001

14.29%

0.002

14.29%

0.003

Validation Accuracy Using RMSprop 

at Different Base Learning Rate

Series1 Series2
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Optimization Using Adam  

S.N  

Base 

Learning 

Rate 

Validation 

Accuracy  

1 0.001 28.57% 

2 0.002 14.29% 

3 0.003 19.05% 
 

 

Figure 4:- Validation Accuracy using Adam Optimizer 

 

Figure 5 displays the validation accuracy results when the pre-trained AlexNet network was trained 

using the Adam optimizer. With an initial learning rate of 0.001, the validation accuracy reached 

28.57%. However, when the learning rate was adjusted to 0.002, the accuracy dropped to 14.29%. 

Subsequently, at a learning rate of 0.003, the accuracy increased to 19.05%. This figure highlights the 

variable impact of different learning rates on the model's validation accuracy when utilizing the Adam 

optimizer. The observed fluctuations demonstrate that the model's performance is sensitive to changes 

in the learning rate, indicating the importance of careful parameter tuning to achieve optimal results. 

This graphical representation allows for a clear visualization of how different learning rates influence 

the model's ability to accurately classify validation data. 

 

Optimization Using SGDM  

 Sr. 

No  

Base 

Learning 

Rate 

Validation   

Accuracy  

  1 0.001 71.41% 

 2 0.002 76.19% 

3 0.003 61.90% 
 

 
 

Figure 5: - Validation Accuracy using SGDM Optimizer 

 

Figure 6 presents the validation accuracy results obtained from training the pre-trained AlexNet network 

with the Adam optimizer. At a base learning rate of 0.001, the validation accuracy reached 71.41%. 

Increasing the learning rate to 0.002 improved the accuracy to 76.19%. However, when the learning rate 

was set to 0.003, the accuracy decreased to 61.90%. These variations in validation accuracy, 

Validation  Accuracy
using Adam

Base Learning Rate

28.57%

0.001

14.29%

0.002

19.05%

0.003

Validation Accuracy using Adam at 

Different Base Learning Rate

Series1 Series2 Series3

Validation  Accuracy
using SGDM

Base Learning Rate

71.41%

0.001

76.19%

0.002

61.90%

0.003

Validation Accuracy Using SGDM 

at Different Base Learning Rate

Series1 Series2 Series3
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corresponding to changes in the Adam optimizer's learning rate, are further depicted in Figure 6, which 

specifically focuses on the SGDM optimizer's validation accuracy. This comparison highlights the 

sensitivity of model performance to learning rate adjustments and underscores the importance of careful 

parameter selection for optimal results. The data visually demonstrates the impact of different learning 

rates on the model's ability to accurately classify validation data.  

 

 
Figure 6: Validation Accuracy Comparison Different Optimizer 

 

Figures 4, 5, and 6 compare validation accuracy across RMSPROP, Adam, and SGDM optimizers, 

respectively, using the AlexNet architecture. RMSPROP, as shown in Figure 4, yielded consistently low 

validation accuracy across varying learning rates. Adam, illustrated in Figure 5, demonstrated a marginal 

improvement in validation accuracy compared to RMSPROP, though still relatively modest. However, 

Figure 6 reveals that SGDM significantly outperformed both RMSPROP and Adam, exhibiting higher 

validation accuracy across the tested learning rates. This comparison indicates that SGDM provides a 

more favourable accuracy trend for this specific task and architecture. While RMSPROP's performance 

was notably lower and less stable, SGDM consistently delivered superior classification accuracy, 

confirming its effectiveness in optimizing the AlexNet model for the given weed image classification 

task. This highlights the substantial impact of optimizer selection on model performance.  

 

5. Conclusion 

 

This study assessed the performance of Adam, SGDM, and RMSPROP optimizers within Transfer 

Learning for weed image analysis, revealing distinct effects on CNN models. Adam stood out for its 

rapid convergence and consistent robustness, proving highly effective for weed classification. SGDM 

provided comparable accuracy but exhibited slower convergence, while RMSPROP's performance 

fluctuated across datasets. These results underscore the vital importance of optimizer selection in 

refining CNNs for accurate weed detection, thereby advancing precision agriculture. Implementing 

Transfer Learning with optimized parameters significantly enhances weed control and boosts 

agricultural productivity. To further improve CNN performance in agricultural contexts, future research 

should investigate novel optimization algorithms, combined optimization strategies, and the use of 

extensive, diverse datasets. 
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