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Abstract: The accurate prediction of slope stability is crucial for the design 

and construction of geotechnical structures, as well as for environmental 

development and risk mitigation. This study explores the application of 

machine learning (ML) models optimized using the Grid Search method 

to enhance slope stability predictions. In this study, an in-depth analysis 

of seven prediction models Logistic Regression (LR), K-Nearest Neighbor 

(KNN), Support Vector Classifier (SVC), CatBoost, and RUSBoost is 

provided. These models were evaluated using a grid search approach to 

find the optimal hyperparameters. The model takes several input features, 

including pore water ratio (ru), height (H), unit weight (Ƴ), cohesion (c), 

slope angle (β), and angle of internal friction (ɸ). The output is the slope 

status, either stable (1) or unstable (0). The generalization ability of 

classification models is improved by using a 5-fold cross-validation (CV). 

Evaluation indicators such as AUC, accuracy, and kappa were analyzed, 

and CatBoost outperformed other machine learning models with the 

highest AUC of 0.823, accuracy of 0.874, and kappa of 0.642. The results 

indicate that CatBoost is a highly effective tool for predicting slope 

stability, surpassing other models in classification accuracy. The capacity 

and efficiency of RF in deformation prediction models make it the most 

accurate tool available for forecasting slope stability. Additionally, a 

comprehensive analysis of feature sensitivity was conducted to determine 

the most significant characteristics for predicting slope stability. These 

findings not only enhance geotechnical safety but also contribute to 

sustainable environmental development by preventing landslides, 

reducing soil erosion, and supporting responsible land-use planning. The 

integration of machine learning into slope stability analysis promotes 

ecological preservation and long-term resilience in infrastructure projects. 
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1. Introduction 

 

Slopes are a common feature in geology and geography that are often encountered in various human 

activities such as engineering and economics. However, slope instability, including landslides, 

mudslides, and collapses, has caused significant human casualties, property damage, and economic 

implications in recent times. Therefore, it is crucial to accurately evaluate the stability of slopes to ensure 

the success of slope engineering. The accurate prediction of slope stability holds immense engineering 

importance. Slope stability estimation is a challenging task due to the complex physical state of the soil. 

The increasing number of slope failures causing significant economic and social losses has raised 

concerns among researchers and engineers. To avoid or reduce such damages, it is essential to conduct 

slope stability analysis and implement appropriate stabilization measures. A comprehensive 
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understanding of the mechanisms that cause slope failure is crucial to effectively address these incidents. 

Therefore, researchers make efforts to minimize losses through numerical and analytical modelling, 

enabling accurate predictions and informed actions. In general, the methods used for slope stability 

analysis are the finite element method and the limit equilibrium method [1, 2]. The Finite Element 

Method (FEM) is a technique that can be used to analyze the limit equilibrium status of a block and 

determine its safety factor through straightforward calculations and clear concepts. However, it has a 

limitation in that it assumes that all sliding surfaces reach an ultimate state of failure simultaneously, 

which does not accurately reflect the actual stress status of slip surfaces. Therefore, it cannot account 

for nonlinear structural deformation [3–7]. Although the FEM can be used to determine the stress field 

and displacement field of a slope [8], it cannot produce an accurate value for the slope stability safety 

factor. Some researchers have calculated slope stability safety factors by combining finite element 

analysis and strength reduction, this method involves the use of specific failure criteria in order to 

determine whether a system enters a limit equilibrium state [9–14]. As a result, estimating slope stability 

using traditional methods is a difficult process that necessitates the use of complex modelling 

approaches, large experimental data, in-depth engineering knowledge and expertise.  

In recent years, researchers have been using machine learning methods to analyze slope stability due to 

advancements in computational techniques. These methods evaluate the stability of slopes by taking 

into account factors such as the slope's geometry and material properties, which produce significant 

results. Li et al. [15] carried out a comparative study among 11 ML models for the prediction of the 

factor of safety considering six slope factors. Zhou et al. [16] utilized the gradient boosting machine 

method for slope stability prediction as a classification model. Qi et al. [17] carried out a study in which 

they compared six different artificial intelligence (AI) techniques, namely random forest (RF), support 

vector machine (SVM), gradient boosting machine (GBM), logistic regression (LR), decision tree (DT), 

and multi-layer perceptron neural network (MLPNN), to predict slope stability. In addition, they used 

the firefly algorithm (FA) to optimize the hyper-parameters of these models. A comparative study 

conducted by Das et al. [18] between artificial neural network (ANN), SVM and genetic programming 

to predict factor of safety and classify the slope as stable or unstable. Manouchehrian et al. [19] 

implemented genetic algorithm (GA) for slope stability analysis specifically for circular mode failure. 

Sakellariou et al. [20] applied ANN using back-propagation technique to estimate slope status. Kardani 

et al. [21] developed a hybrid stacking ensemble model on a database generated using finite element 

analysis to enhance slope stability prediction. Zhang et al. [22] compared four ML techniques namely, 

random forest (RF), support vector machine (SVM), logistic regression (LR) and extreme gradient 

boosting (XGBoost) for slope stability prediction. Gordan et al. [23] developed ANN and particle swarm 

optimization (PSO)-ANN models on 699 samples generated under different conditions using GeoStudio 

software for slope stability prediction. Pham et al. [24] developed ensemble models using sequential and 

parallel techniques for slope stability estimation. Apart from slope stability, machine learning techniques 

have been widely used in various fields of geotechnical engineering such as landslide susceptibility 

assessment [25–28] , settlement prediction of shallow foundations [29, 30], predicting bearing capacity 

of pile foundations [31–33] , predicting physical properties of soil [34, 35], soil quality assessment [36]  

and liquefaction assessment [37]. Meanwhile, remarkable results were obtained with increasing 

available slope features for slope stability prediction using supervised learning methods. Machine 

learning (ML) has become an important tool for predicting slope deformation. With the help of various 

intelligent algorithms and technical methods, the slope deformation prediction model has significantly 

improved, leading to a new era of slope deformation prediction. However, it is still essential to find an 

appropriate technique for predicting slope deformation, as each of the mentioned strategies has its own 

drawbacks. 

Therefore, the objective of this study is to conduct a comparative analysis among different machine 

learning classifiers with the specific goal of predicting slope stability modelled as a classification 

problem. The study will explore and evaluate the performance of Logistic Regression (LR), K-Nearest 

Neighbor (KNN), Support Vector Classifier (SVC), CatBoost and RUSBoost classifiers. These 

techniques have been chosen due to their popularity in various projects, but rarely compared with each 

other. This study is outlined as follows: Section 2 provides a concise introduction to the machine 

learning classifiers. Section 3 introduces the dataset of slopes and the techniques used to categorize their 

stability. Section 4 presents the outcomes and analysis derived from the performance criteria. The study's 

conclusion is given in Section 5. 

1.1 Benefits of Slope Stability Prediction for Geotechnical Structures and Environmental Development 



262                                                                                  Metall. Mater. Eng. Vol 31 (4) 2025 p. 260-273 

Accurate slope stability prediction provides numerous benefits in both geotechnical engineering and 

environmental development: 

⚫ Enhanced Infrastructure Safety – By accurately predicting slope failures, engineers can design safer 

roads, embankments, and retaining walls, reducing the risk of structural collapse and minimizing 

maintenance costs. 

⚫ Optimized Construction Planning – Reliable slope stability analysis enables efficient land-use 

planning, reducing excessive excavation and ensuring that construction activities are carried out in stable 

zones. 

⚫ Landslide and Disaster Prevention – Early detection of unstable slopes helps mitigate landslide 

risks, protecting human settlements, transportation networks, and industrial sites from natural disasters. 

⚫ Environmental Conservation – Slope instability often leads to deforestation, soil erosion, and 

sedimentation in water bodies, negatively impacting biodiversity and ecosystem balance. Predictive 

models aid in sustainable land management, reducing environmental degradation. 

⚫ Climate Resilience and Sustainable Development – As climate change increases the frequency of 

extreme weather events, robust slope stability analysis helps in adapting infrastructure to withstand 

heavy rainfall, earthquakes, and other environmental stressors. 

⚫ Improved Resource Management – Machine learning-driven slope stability analysis enables better 

decision-making in resource allocation, minimizing financial losses associated with slope failures and 

infrastructure damage. 

By integrating machine learning models into geotechnical engineering, this study contributes to the 

development of resilient infrastructure while promoting ecological balance and sustainable 

environmental practices. 

 

2. Computational Techniques 

 

2.1 Logistic Regression  

Logistic regression (LR) is a statistical method used to model the relationship between a binary 

dependent variable and one or more independent variables. It allows for the estimation of probabilities 

and odds ratios, as well as the making of predictions for new observations [38]. The dependent variable 

in logistic regression is a binary variable, which means it takes one of two possible values. For example, 

it could represent the presence or absence of a disease, or whether a customer purchased a product or 

not. The independent variables can be continuous, categorical, or a combination of both. The logistic 

regression model is used to estimate the probability of the dependent variable taking on the value of 1 

(or 0, depending on how the variable is coded) based on the values of the independent variables. This 

probability is modelled as a function of the linear combination of the independent variables, which is 

then transformed by the logistic function (as shown in Equation 1): 

P(Y = 1|X) =
1

(1+e−(β0+β1X1+β2X2+⋯+βpXp))
 (1) 

 where P(Y=1|X) is the probability of the dependent variable taking the value 1 given the values of 

the independent variables X1, X2, ..., Xp, and β0, β1, β2, ..., βp are the coefficients of the model. 

The logistic function is a curve that takes a linear combination of independent variables and maps it onto 

a probability value between 0 and 1. It has an S-shape, with a steeper curve around the middle (where 

the probability is 0.5) and a flatter curve towards the extremes (where the probability is close to 0 or 1). 

Logistic regression is a statistical model that uses maximum likelihood estimation to determine the 

values of the coefficients that best fit the data. These coefficients can be interpreted as the change in the 

log odds of the dependent variable for an increase of one unit in the associated independent variable. 

Additionally, you can use the exponentiated value of the coefficient to calculate the odds ratio. 

2.2 K-Nearest Neighbor 

K-Nearest Neighbors (KNN) is a non-parametric technique that is extensively used in supervised 

machine learning for classification and regression tasks. The fundamental principle behind the KNN 

algorithm is to categorize a new data point by comparing it to the existing data points. The algorithm 

saves all the existing data points and identifies the K-nearest neighbors using a distance metric like 

euclidean distance. The algorithm then assigns the new data point to the category that is most common 

among its K-nearest neighbors. While KNN can be applied to both classification and regression tasks, 

it is mainly used for classification [39, 40]. 
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2.3 Support Vector Classifier 

Support Vector Classifier (SVC) is a supervised learning model based on the statistical learning theory 

used to perform classification analysis. The theory of SVC focuses on linear separability, decision limits, 

and margin maximization. In 1963, Vapnik and Chervonenkis [41] established the Vapnik-

Chervonenkis (VC) dimension, which helped explain the generalization performance of SVC. The 

hypothesis space, which is the set of decision boundaries that a learning algorithm may learn, is 

measured by its capacity or complexity through the VC dimension. The VC dimension of SVC 

represents the greatest number of points that the algorithm's decision border can shatter or perfectly 

separate. Understanding the VC dimension is key to understanding SVC generalization performance 

since it provides a theoretical framework for analyzing the model's complexity versus generalization to 

unknown data. In 1992, Boser et al. [42] introduced kernel functions to SVC to handle non-linearly 

separable data. In 1995, Cortes and Vapnik [43] introduced the SVC formulation, which penalty factor 

C to discover optimal separating hyperplanes with the largest margins. The penalty factor C determines 

the trade-off between misclassifications in training data.  

Numerous studies have been conducted to enhance the training and performance of SVC. Platt (1999) 

[44] introduced the Sequential Minimum Optimization approach to expedite the training of large 

datasets. Joachims (2006) [45] proposed the Budgeted Support Vector Machine that selects a subset of 

support vectors to accelerate the training process. Additionally, parallel computing, distributed learning, 

and active learning have been explored to enhance the efficiency and scalability of SVC. Despite some 

challenges with parameter tuning and scalability, SVC has demonstrated remarkable performance and 

versatility [46–51]. Researchers are continuously investigating ways to improve the algorithm's 

performance. It is essential to comprehend the progress made by SVC and future directions to utilize it 

effectively in solving complicated categorization problems. 

2.4 CatBoost 

CatBoost is a gradient boosting decision tree algorithm designed for handling categorical variables in 

datasets [52, 53]. It has built-in support for categorical variables, eliminating the need for preprocessing 

like one-hot encoding. CatBoost employs various optimizations, such as ordered boosting, to improve 

training speed and memory efficiency. It also incorporates regularization techniques like L2 

regularization to prevent overfitting during training. Additionally, CatBoost provides built-in support 

for cross-validation, simplifying the evaluation of model performance and hyperparameter tuning. It is 

highly regarded for its high performance across a wide range of datasets, particularly those containing 

both numerical and categorical features. CatBoost utilizes binary decision trees as its fundamental 

predictor, which greatly enhances its strong performance across various domains and datasets [54]. 

2.5 RUSBoost 

Data sampling is a technique used in machine learning to address class imbalance. Class imbalance 

occurs when one class has significantly more data points than the other class(es) in a dataset. This can 

result in a biased model that performs poorly on the minority class. To address this issue, data sampling 

methods can be used to modify the distribution of the classes in the training data set. One common 

method of data sampling is oversampling. Oversampling involves adding more instances of the minority 

class to the training data set. This can be done using techniques such as SMOTE (Synthetic Minority 

Over-sampling Technique), which creates synthetic data points in the minority class. Another method 

is undersampling, which involves removing instances from the majority class to achieve a more balanced 

distribution. The RUS (Random Under-Sampling) algorithm is an example of an undersampling method. 

Unlike other undersampling methods, RUS does not selectively remove instances from the majority 

class. Instead, it randomly selects instances from the majority class to remove until a desired class 

distribution is achieved. The detailed literature may be referred to at [55]. 

 

3. Model Development and Optimization 

 

3.1 Data Preprocessing and Visualization 

When developing a classification model for analyzing slope stability, it is crucial to carefully select 

features that significantly impact slope stability. This involves adhering to specific feature selection 

principles, such as selecting essential features from the available feature set and eliminating irrelevant 

features that do not contribute much to the succeeding learning stages. These principles help to train the 

model efficiently and prevent problems associated with high-dimensional data. It also ensures that the 

model focuses on the most important features of slope stability, which enhances the model's overall 
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prediction performance. Applying these principles in feature selection is crucial for developing a robust 

classification model designed to handle the complexities of slope stability evaluation. Currently, factors 

such as the magnitude of pore water ratio (ru), height (H), unit weight (Ƴ), cohesion (c), slope angle (β), 

and angle of internal friction (ɸ) are extensively used in slope stability prediction. This study uses 444 

slope stability cases and modelled them as a classification problem (Figure 1) to predict slope status 

[stable (1) or unstable (0)] collected from [56]. Before conducting the analysis, the dataset is normalized 

using Equation 2 to remove the effects of different scales, units, and distributions that can result in biased 

model training and reduced accuracy. By scaling the data to a common range, we enhanced the model's 

ability to generalize and make accurate predictions on unseen data. 

ynormalization =
x− xmin

xmax− xmin
    (2) 

where, y is a normalized input parameter, x is the original input parameter, xmax is the maximum 

parameter and xmin is the minimum parameter. 

The distribution and variability of each input variable on slope status are important factors that need to 

be analyzed in order to gain a better understanding of the dataset. Figure 2 shows the distribution and 

variability of each input variable. The violin plots of the dataset are presented in Figure 3. The violin 

plot is a useful visualization tool that displays the distribution and density of a dataset across different 

categories or groups. The width of the violin at any point represents the density of data at that particular 

point, with the thicker parts of the violin indicating regions of high density and the thinner parts 

indicating regions of low density. The horizontal line inside the violin represents the median value of 

the data. By examining the violin plots, we can clearly observe that the variables Ƴ, ɸ, β, and ru have a 

wide distribution pattern, as seen from the spread of the violin plot shapes. This indicates that the data 

points for these variables are widely dispersed and have a large range of values. On the other hand, the 

variables c and H exhibit a densely clustered distribution with a higher frequency of data points at certain 

values, as seen from the narrow violin shapes. This indicates that the data points for these variables are 

closely grouped and have a smaller range of values. Such insights can be useful in identifying trends 

and patterns and can help in formulating strategies to manage slope stability. The distribution of the 

variables and the relationship between slope status and other input variables are shown in the pair plots 

(Figure 4). The figure provides a graphical representation of the pairwise relationships between the 

different features, including the frequency distribution of each parameter. The diagonal histogram 

displays the numerical distribution of each attribute, which helps in understanding the data distribution. 

The upper and lower triangles represent scatter plots, which depict the overall correlation between the 

variables plotted on the x and y axes. 

 
Figure 1: Dataset Pie Chart 
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Figure 2: Correlation Matrix of Dataset 

 
Figure 3: Violin Plots showing the distribution of slope cases 

 
Figure 4: Pairplots of variables 

In order to achieve the most accurate classification, it is best if each value of every feature on the diagram 

is linked exclusively to one class label, either stable or unstable. Figure 5 illustrates the categorization 

of slope stability using different indicators. The graphic shows instances where one indicator value 

corresponds to multiple slope classifications. A possible explanation for this behavior is that the data 

lacks linear separability, which makes it difficult to establish clear boundaries for the feature value 



266                                                                                  Metall. Mater. Eng. Vol 31 (4) 2025 p. 260-273 

 
Figure 5: Slope Stability assessment across various features 

3.2 Model Development and Optimization 

This study investigates the use of five machine learning algorithms, namely logistic regression (LR), k-

nearest neighbor (KNN), support vector classifier (SVC), catboost and rusboost in slope stability 

classification. When dealing with supervised classification problems, it is crucial to evaluate the 

performance of classification models on new data to determine their ability to generalize. To achieve 

this, the dataset is typically divided into two subsets - the training set and the testing set (Figure 6). The 

training set, which contains most of the data, is used to train the model and optimize hyperparameters. 

On the other hand, the smaller testing set, consisting of approximately 30% of the dataset or 133 cases, 

is exclusively used to assess the models ability to generalize to new, unseen instances. Around 70% of 

the original dataset, which equates to 311 cases, is selected as the training set. This ensures that the 

model is trained on a sufficiently wide range of datasets, as well as a separate, independent subset for 

rigorous evaluation of its performance on unseen data. The training process for each model involves 

exploring various combinations of hyperparameters using grid search, as detailed in Table 1. By 

systematically evaluating these combinations, the optimal hyperparameters are identified to achieve the 

best model performance. 

These optimal hyperparameters are then utilized for making predictions on unseen data, ensuring the 

models effectiveness in real-world scenarios. Machine learning models are assessed using a technique 

called 5-fold cross-validation (CV). This process involves dividing the training data into five random 

folds. Four of these folds are used to train the machine learning model, while the remaining fold is used 

as a verification set to assess the models performance. The training and testing process is repeated five 

times, using a different subset each time as the testing set. This allows us to calculate the performance 

of the machine learning model on the training set by averaging the results of the five training iterations. 

The Area Under the Curve (AUC), Accuracy, and Sensitivity metrics are used to evaluate the machine 

learning algorithms overall performance across both the training and testing sets. The AUC metric 

provides a comprehensive evaluation of the model's predictive capacity, taking into account its ability 

to discriminate between classes as well as its robustness over varied thresholds. By analyzing the AUC 

on both training and testing data, the machine learning algorithm's ability to capture underlying patterns 

and generalize to previously encountered instances can be extensively reviewed and validated. 

Sensitivity provides insight into how well a model can detect positive instances or events. A high 

sensitivity value indicates that the model has a low rate of false negatives, meaning it is effective at 

correctly identifying positive instances. The hyperparameter optimization settings for all the models, 

along with their prediction results, are shown in Table 1. 
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Figure 6: Machine Learning Model for the study 

Table 1: Obtained optimal hyperparameters of each model by grid search 

Model Hyperparameters Step Size 
Optimal 

Hyperparameters 
AUC Accuracy Sensitivity 

LR C = [1 – 500] 1 2 0.615 0.638 0.687 

KNN n_neighbors = [10 – 300] 1 32 0.779 0.796 0.843 

SVC kernel = ['linear', 'poly', 'rbf']  rbf 0.815 0.809 0.859 

 C = [1-500] 1 352    

 Gamma = [0.001, 0.01, 0.1] nil 0.01    

CatBoost 
learning_rate = 

[0.1,0.01,0.001] 
Nil 0.1 0.823 0.874 0.859 

 n_estimators = [50 – 500] 1 295    

RUSBoost 
learning_rate = 

[0.1,0.01,0.001] 
Nil 0.1 0.771 0.819 0.828 

 n_estimators = [50 – 500] 1 317    

 

4. Results and Discussion  

 

This study utilized several classifiers such as LR, KNN, SVC, CatBoost and RUSBoost for slope 

stability prediction. The performance of each classifier was measured using the AUC metric, with 1.0 

indicating optimal performance. The ROC curves of these classifiers, depicted in Figure 7, showed that 

LR had an AUC of 0.615,  KNN had an AUC of 0.779, SVC had an AUC of 0.815, CatBoost had an 

AUC of 0.823 and RUSBoost had an AUC of 0.771. The various AUC values for different classifiers 

can be attributed to differences in their underlying algorithms, model complexity, and how well they 

capture relationships between features and the target variable. The ROC curves of machine learning 

models such as SVC and CatBoost were located slightly higher in the top left corner of the plot compared 

to the other models, indicating superior performance. These models had AUC values exceeding 0.80, 

which is somewhat better than that of LR, KNN and RUSBoost. Figure 8, which shows the confusion 

matrix, further highlights the differences in performance between classifiers. From Figure 8, it can be 

inferred that LR had 52 misclassifications, RUSBoost had 31, KNN had 30, SVC had 25 and CatBoost 

had 24. Based on these results, classifiers such as SVC and CatBoost had superior performance in terms 

of AUC values and had fewer misclassifications, implying better discriminatory ability and overall 

performance when compared to classifiers such as LR, KNN, and RUSBoost. 
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Figure 7: ROC curves of classification models on testing dataset 

 
Figure 8: ROC curves of classification models on testing dataset 

To validate, the performance of different classifiers was evaluated using kappa values, which range from 

-1 to 1. The closer the value is to 1, the more reliable the classification is. Among the classifiers 

evaluated, CatBoost had a kappa value of 0.642, followed closely by SVC at 0.627, while KNN and 

RUSBoost had values of 0.554 and 0.539, respectively. LR had the lowest kappa value at 0.228. Based 

on the kappa values, CatBoost outperformed other models. The ranking of models based on the kappa 

value is shown in Figure 9. 

 
Figure 9: Performance ranking of machine learning models based on kappa 

4.1 Sensitivity Analysis 

To prevent slope failures, it is crucial to assess the sensitivity of features that contribute to triggering 

such events. Evaluating the sensitivity of these features is essential to assess slope stability and build 

effective support structures. In order to quantify the sensitivity of features for CatBoost model, their 

impact on predictive performance is assessed at the optimum hyperparameters. This sensitivity study 

provides valuable insights into the influential features that trigger slope stability, enabling informed 

decision-making and preemptive efforts to limit the risk of slope failure. Figure 10 shows the sensitivity 

of features for CatBoost classification model. The results reveal that the sensitivity of β is 0.921, H is 

0.921, ru is 0.859, c is 0.687, ɸ is 0.515 and Ƴ is 0.468. It can be observed that β, H, ru, and c are highly 

sensitive to slope stability.  Therefore, the values of β, H, ru,  and c must be selected accurately and 

reasonably in artificial slopes, considering field tests and on-ground conditions. The values of H and β 

that are higher indicate that the geometry variables are highly sensitive to slope stability. Similarly, the 

soil property c, which is the most important, is also highly sensitive to slope stability. This means that 
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the binding property of soil material will change significantly, thereby affecting the integrity of soil 

structure (internal strength). Additionally, ru also has high sensitivity, and it directly influences soil 

strength and stability by the ability to retain or drain water. It is crucial to optimize these values in 

practical design to ensure slope stability. Finally, it is worth noting that the sensitivity of ɸ and Ƴ is 

comparatively lower than that of other features. 

 
Figure 10: Representation of feature sensitivity for CatBoost model 

4.2 Feature Importance Analysis 

In slope stability analysis, it is crucial to identify the most influential parameter for making accurate 

predictions. This section assesses the feature importance using the CatBoost model, which represents 

the contribution of each feature in a model (as illustrated in Figure 11). The most important feature for 

predicting slope stability was the parameter c (0.216), followed by β (0.198), Ƴ (0.185), H (0.166), ɸ 

(0.17), and ru (0.063). The pore water pressure (ru) had the smallest impact on the slope, with a value 

of 0.063. This observation is consistent with previous research presented by [21], indicating that the 

impact of pore water pressure on slope stability is almost negligible. Most other influential variables 

have significant influences that cannot be ignored. Therefore, these factors are also an indispensable 

part of slope stability analysis. It is important to note that different influence factor rankings may be 

obtained when different data sets and classification models are used. More representative results may 

be obtained with the emergence of more effective slope cases and algorithms in the future. 

 
Figure 11: Representation of feature importance for CatBoost model 

 

5. Conclusion 

 

This study aims to compare the performance of five different machine learning classifiers, namely LR, 

SVC, KNN, CatBoost, and RUSBoost, in predicting the stability of 444 slope cases. Six features, 

including H, ru, β, c, Ƴ and ɸ, were utilized to develop and evaluate the classification models. To 

optimize the performance of the models, grid search was used to determine the optimal hyper-

parameters. Based on the analysis, the conclusion of the study are as follows: 

1.Based on the evaluation metrics, it can be determined that the CatBoost model outperformed other 

classifiers in terms of accuracy and generalization. To validate the classification performance of the 

models, confusion matrix and kappa value were used in the analysis. The confusion matrix provides a 
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comprehensive summary of the models classification results, including true positives, true negatives, 

false positives, and false negatives. On the other hand, kappa is a reliability measure that ranges from -

1 to 1, where values closer to 1 indicate better classification performance. After analyzing the results, it 

can be concluded CatBoost has the best overall performance in discriminating between stable and 

unstable slopes. Among the machine learning methods (LR, SVC, KNN, CatBoost, and RUSBoost), 

CatBoost demonstrated superior performance with the highest AUC (= 0.823), least misclassification of 

24 and highest kappa of 0.642. This suggests that machine learning classifier such as CatBoost is a 

strong alternative to other classifiers for slope stability prediction, particularly when interpretability or 

handling imbalanced datasets is crucial.  

2.The study clearly establishes that slope stability is a complex phenomenon that cannot be accurately 

predicted by relying solely on one parameter. The results obtained from the CatBoost model indicate 

that several features exhibit high sensitivity to slope stability. Specifically, the values of β (= 0.921), H 

(= 0.921), ru (= 0.859) and c (= 0.687) are highly sensitive to slope stability, which means that accurate 

selection of these features is crucial for accurate prediction of slope stability. The importance of 

considering both geometrical features (such as H and β) and soil properties (such as c, and ɸ) while 

predicting slope stability cannot be overstated. The feature importance scores were also evaluated to 

measure the contribution of each feature in improving the predictive power of the model. The results 

from the CatBoost model indicate that the model relies most on parameter c, followed by β, Ƴ, H, ɸ, 

and ru for making predictions. The feature importance score of ru is mainly concentrated near zero, 

implying that this feature has little impact on the model's predictions. This in-depth analysis highlights 

the intricate nature of evaluating slope stability and emphasizes the need for taking into account a 

comprehensive range of characteristics instead of relying on individual metrics for precise forecasting. 

It is important to note that accurate prediction of slope stability is essential for ensuring the safety of 

geotechnical structures such as roads, bridges, and buildings. The findings of this study provide valuable 

insights into the features that affect slope stability and emphasize the need for taking a holistic approach 

to slope stability analysis. By considering a range of features and characteristics, geotechnical engineers 

can make more informed decisions about the design and construction of geotechnical structures, thereby 

enhancing their safety and reliability.  

3.The complex relationship between slope stability and the various features that affect it can be difficult 

to model accurately due to its nonlinear and multidimensional nature. However, this study case shows 

that the CatBoost classifier is effective in navigating this intricate connection, making precise and 

reliable predictions. This highlights the importance of supervised learning in assessing slope stability. 

To improve and expand upon the effectiveness of machine learning algorithms in assessing slope 

stability, future research should focus on incorporating key samples and features that influence the 

dynamics of slope stability. This could include integrating rainfall patterns, seismic activity, human 

interventions, and other environmental events into the algorithmic structure to improve prediction 

accuracy, generalization abilities, and reliability in real-world scenarios. By doing so, we can further 

expand and improve the effectiveness of machine learning methods in addressing complex geotechnical 

issues, ultimately helping to mitigate risks and ensure the safety of infrastructure and communities. 

4.Accurate slope stability predictions enable proactive risk assessment, reducing the likelihood of 

landslides and structural failures in geotechnical engineering projects. 

5. Machine learning-based slope stability analysis supports sustainable land-use planning, minimizes 

environmental degradation, and prevents soil erosion and sedimentation in water bodies. 

6. The findings contribute to the development of safer and more resilient geotechnical structures, 

reducing maintenance costs and enhancing long-term infrastructure stability. 

7. Further studies can explore deep learning techniques, hybrid ML models, and real-time monitoring 

systems to enhance prediction accuracy and adaptability in varying geotechnical conditions. 

8. By integrating machine learning into geotechnical engineering, this research contributes to both 

infrastructure safety and environmental conservation, promoting a balanced approach to development 

and sustainability. 
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