
Metallurgical and Materials Engineering                                                                                 Research paper 

Driver Drowsiness Detection Based on Convolutional Neural Network 

Architecture Optimization Using Genetic Algorithm 

 

Raparthi Santhosha1, Swetha G2 

 
1PG Student, Department of Computer Science and Engineering, Teegala Krishna Reddy engineering 

college, India, raparthi.santhosha18@gmail.com 
2Assistant Professor, Department of Computer Science and Engineering, Teegala Krishna Reddy 

engineering college, India, swethareddy630@gmail.com 

 

 

Abstract: Drowsy driving is a major factor in many road accidents, which 

makes it essential to have dependable real-time detection systems to help 

keep roads safer. Detection of driver drowsiness presents a novel approach 

using convolutional neural network (CNN) optimized by a genetic 

algorithm (GA). The facial features of drivers are examined for the system 

to classify whether the driver is "Alert" or "Drowsy," thereby issuing 

warnings to prevent fatigue-related incidents. The Genetic Algorithm 

optimizes a few critical CNN hyperparameters dynamically, such as the 

number of layers, filter sizes, and dropout rates. This evolutionary 

optimization enhances classification accuracy and decreases overfitting in 

the model, thereby producing a much stronger and more generalizable 

solution. The CNN model was trained on a set of labeled facial images and 

tested for performance on a separate set for validity and applicability under 

real-world conditions. The achieved high accuracy with the optimized 

system is 91.8% and a billion low inference time of 50 milliseconds per 

frame suitable for real-time deployment with vehicles. This way, the driver 

monitoring system opens avenues for efficient and high performance 

through a smart marriage of deep learning and evolutionary algorithms. 

The results strongly suggest that the proposed method could be a promising 

option for enhancing Advanced Driver-Assistance System (ADAS) and 

thus building safer driving environments. 
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1. Introduction 

 

Driver drowsiness is a major cause of road accidents around the world, and thousands die and get injured 

every year. Long hours of driving especially during nighttime or in monotonous conditions can highly 

deprive a driver of alertness, reaction time, and judgement. Keeping a mounting concern about road 

safety, the growth of intelligent automated systems has become inevitable, which will monitor the driver's 

level of fatigue and alert him on time [1], [8]. Developments in the field of artificial intelligence, 

especially deep learning, appear promising in this regard. Convolutional Neural Networks (CNNs) are 

widely used in visual recognition tasks due to the hierarchical way of feature extraction from an image. 

CNNs can be utilized for drowsiness detection by analyzing and detecting in real-time video input the 

signs of fatigue such as facial expressions, eye closure, yawning, and head movements [2], [4], [6], [9]. 

Though CNNs are powerful, designing and optimizing their architectures is generally a cumbersome task 

requiring training and testing over a number of parameters such as number of layers, filter sizes, activation 

functions, dropout rates, etc [1], [2]. Given this challenge, the research poses a novel system for driver 

drowsiness detection using CNNs and GAs to optimize network architecture. GAs simulate some 
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biological phenomena that revolve around natural selection. They basically propagate an evolving 

population of solutions through many generations through the use of genetic operators such as selection, 

crossover or mutation [1], [7]. The CNN architecture design by GAs thus helps the system search 

automatically the set of hyperparameters that guarantees the highest accuracy and efficiency and the least 

possibility of overfitting. This approach is said to be easeful for implementation in real-world vehicles, 

unlike traditional or sensor-based techniques, such as EEG or wearable devices, which may be intrusive 

or inconvenient for drivers [3], [5]. It brings the advantage of high detection accuracy, which, in turn, 

ensures low inference times of about 50 ms/frame, allowing it to be easily incorporated into ADAS 

platforms  [6], [9]. This project has demonstrated the utility of fostering better generalization to various 

persons, structures of faces, and patterns of fatigue by evolving deep learning architectures. The results 

have shown this concept to be a viable and scalable approach to intelligent driver-monitoring systems 

[7], [8]. Thus, the method described in this project allows for a sturdy and efficient way of real-time 

detection of drowsiness in drivers using GA-optimized CNN architectures. The mixture of deep learning 

and evolutionary computation stands out as an important contribution in the path to smart and safety-

enhancing technologies in today's vehicles [2], [4]. The model is thereafter trained with a labeled dataset 

comprising facial images of drivers, both awake and drowsy. This optimization with GAs makes the CNN 

optimized for drowsiness detection and always able to find a better architectural trade-off toward real-

time performance. Hence, it somewhat further reduces the human effort and a manual load of architecture 

tuning, thus proving to be better-performing over a range of different environmental and lighting 

conditions [4], [6]. 

 

2. Problem Statement 

 

Drowsy driving is among the leading causes of road accidents, accounting for thousands of casualties and 

injuries every year. The longer the driving goes on, the lower goes alertness, and reaction time gets drawn. 

Thus, it is imperative, to begin with, the detection of driver fatigue. Conventional methods rely on partial 

solutions that do not measure up to the temporal requirements of a real-time safety application-monitoring 

steering behavior or lane deviations [14].High-level CNN based facial-features drowsiness detection 

systems came about with developments in computer vision, trying to detect various drowsiness indicators, 

such as eye closure, yawning, and head position [14][16].However, the CNN mostly depends on the 

correct choice of hyperparameters, such as indicating the number of layers, sizes of filters, and dropout 

rates. Hyperparameter tuning by manual means is hard and may consequently produce models that are 

not optimal, especially when the variables encountered include varying illumination, face angles, and 

driver conditions. Then again, the deep learning model should generalize across people having separate 

emotional and behavioral peculiarities that may influence the imparting signals of drowsiness [11][13]. 

Attempted approaches do not bare themselves to adapt when faced with such deviations and find their 

detection rates varying widely, thereby reducing the effectiveness of these systems in practice. Genetic 

Algorithms (GAs), somehow taken from the theories of evolution of biological organisms, have been 

presented as a promising catch to automate the CNN architecture optimization process. GAs provide an 

efficient method for searching enormous design spaces, evolving the best network configurations for 

fatigue detection, thereby obviating the involved manual tuning effort and improving generalization 

[15].On the other hand, intrusive physiological-based detection methods with the help of biosignals such 

as skin conductance or blood volume pulse are accurate but impractical for everyday-vehicle-use [12]. 

Building a non-intrusive, real-time system would be strongly demanded balancing precision with 

performance and appropriate for deployment in an intelligent vehicle. The purpose behind this study is 

the development of a driver-drowsiness detection system based on CNN, optimized through Genetic 

Algorithms to increase accuracies, reduce overfitting, and ensure strong deployment in real-time. 

 

3. Related Work 

 

With increased road accidents caused by driver fatigue and drowsiness, research into real-time driver 

monitoring systems has seen a surge. These systems intend to enforce road safety by detecting 

preliminary signs of drowsiness or inactivity in a driver through various technologies, the prominent ones 

being deep learning and physiological signal analysis.The use of deep learning approaches was fully 

canvassed on driver drowsiness assessment by Saini et al. [10] They put weight on computer vision 

techniques that use facial landmarks, eye closure duration, and yawning patterns to detect drowsy 



1528                                                                            Metall. Mater. Eng. Vol 31 (5) 2025 p. 1526-1541 

behaviors. The system demonstrated that deep learning models could offer good robustness to changes 

in lighting conditions and thus could be applied in a real-world environment. This study presented a 

perspective of using deep learning models in conjunction with on-board vehicle cameras to produce 

cheaper and more scalable alternatives toward road safety. The authors treated an area with more human 

aspects. Xu et al. [11] introduced a driver authentication and verification system that incorporated 

psychological and behavioral data. They classified their work as "Human-Factors-in-the-Loop" where 

deep learning would interpret elements of behavioral patterns related to stress, focus, or driving style. 

The system differentiated drivers and monitored their fitness to drive based on the neural network, thereby 

opening the possibility for individualized driver monitoring systems. With respect to physiological 

signals used in the detection of drowsiness, BVP and skin conductivity were considered in the account of 

Poli et al. [12]. Their approach was oriented toward sensor data, attempting to employ wearables and 

machine learning to detect anomalies in the autonomic nervous system's response associated with fatigue. 

The study observed that physiological signals probably convey much more genuine and less falsifiable 

evidence of drowsiness compared with observing facial expressions. The differences in driving behavior 

with respect to novice and experienced drivers were explored by Xu et al. [13]. They performed their 

analyses considering rule violations and the driving performances under stress while employing neural 

networks. The study suggested that novice drivers violated the rules more often under drowsy or stressed 

states and hence called for more dynamic monitoring systems that are adaptive according to driver 

experience. 

The study by Walizad et al. [14] built a CNN-based model for drowsiness detection using real-time video 

analysis. The system captures facial features such as the degree to which the eyes are open and mouth 

movements and capitalizes on the feature extraction capability of CNN to ensure the highest levels of 

accuracy. This research, furthermore, supports the idea that computer vision can be used to detect fatigue 

with the bare minimum hardware. A newly raised approach for the observation of driver fatigue was 

suggested by Wang et al. [15], based on multifractal theory. This method considered the variations of 

complex fluctuations in driver behavior, such as steering patterns and head movements. Modeling these 

as multifractal signals led to highly accurate detection, especially in the earlier stages of fatigue, thus 

displaying suitable application prospects for warning systems. To conclude, all existing literature proves 

the fact that deep learning coupled with physiological and behavioral data is going to be able to build a 

driver monitoring system. Camera-based solutions promise non-invasive monitoring; however, having 

biosignals and behavioral analysis available furnishes another aspect, that of accuracy. Moving forward, 

hybrid principles will hopefully guarantee that multiple modalities work in tandem to deliver robust, 

personalized, and adaptive detection of drowsiness in any kind of driving environment. Challenges 

abound despite achievements mentioned above in drowsiness detection. Present systems tend to be mostly 

vision-based or physiological sensors-type, with very few in actuality working towards integration of 

both-excellence-for multimodal analysis. The implementation still suffers from the reduction of time 

banners for its fulfillment in various environmental conditions. Night driving, glare, and sometimes even 

partial occlusions are examples of such injuries. User well-being and privacy become especially 

important when wearing sensors or when the driver is being monitored fully by cameras. Another 

limitation pertains to the generalizability. Many deep learning techniques are trained on controlled data 

sets that do not encapsulate the variability that characterizes real-life scenarios with respect to driver 

behavior, ethnicity, age, or how fatigue manifests. As stressed in studies performed by Xu et al. [11,13], 

this could be addressed by monitoring systems and adaptive models that learn from the individualistic 

driving style, thereby enormously improving detection efficacy and driver confidence. 

 

4. Proposed Work 

 

The proposed system aims to detect driver drowsiness in real time using a Convolutional Neural Network 

(CNN) architecture optimized through a Genetic Algorithm (GA). Thus, a non-intrusive, vision-based 

system is assumed to continuously monitor the facial features of a driver and assess his levels of alertness. 

These conditions place emphasis on integrating such methodologies into smart vehicles and ADAS where 

real-time safety and responsiveness are prominent [7], [8]. The core of the system is a live video stream 

from a dashboard-mounted camera that is fixed inside the car. The video is then further processed to 

extract facial landmarks and specific regions of interest (eyes, mouth, and head position). These features 

have proven to be reliable indicators of signs of fatigue, such as frequent blinking, extended eye closure, 

yawning, and head nodding [9], [10], [14]. The sets of isolated features are, in fact, fed into the CNN 
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whose architecture is, in its turn, optimized by a Genetic Algorithm. The GA aims at hyperparameter 

tuning in an automatic fashion by evolving a population of different CNN architecture designs over 

multiple generations. Parameters that are taken into account can vary from the number of convolutional 

layers, filter sizes, pooling strategies, dropout rates, and more in order to select the greatest compromise 

between efficiency and performance. This evolutionary approach thus avoids the commonly encountered 

problems of manual tuning and benefits in a much better generalization on unseen data [7], [10]. 

Using a dataset labeled with thousands of images annotated with drowsy or alert labels, the architectures 

are trained. During training, the GA progressively selects and breeds the best-performing architectures 

from earlier generations to improve the accuracy of its classifications. Once the model is trained and 

optimized, it is ready to perform real-time inference, one that can process an on-road frame in less than 

50 milliseconds [9], [14]. There is also a temporal-smoothing system that considers drowsiness prediction 

over several frames to further improve reliability. This almost totally eliminates false positives due to 

occlusions of the face for a few frames or even some random facial expression. A continuous drowsiness 

claim for a certain time window shall trigger an audio or haptic alert to warn the driver, requesting 

corrective measures [7], [13]. The whole system has been built with user-friendliness in mind, keeping 

the option for scaling up the system to be deployed on high-performance computing units and, of course, 

for scaling down to run on any edge device such as embedded GPUs or AI accelerators used in modern 

vehicles. By doing so, it ensures at least some degree of scalability and cost-efficiency toward commercial 

deployment [8], [15]. Unlike the traditional EEG- or physiological-sensor-based methods that require 

heavy and controversial hardware, the system from state keeping one's gaze on the driver has a practical 

advantage for monitoring [12]. It will become robust while learning the scene, the skin colors, and the 

orientations using deep learning models [10], [14].Behavioral data and deep learning strategies allow the 

system to adapt dynamically to fatigue response and a driver's ever-changing familiarization with his 

work patterns. This falls under the latest developments in human-centered AI and personalized safety 

systems [11], [13].Essentially, the presented system looks to enable real-time, efficient, and non-invasive 

detection of driver fatigue through implementation of GA-based CNNs. This shall help in providing a 

scalable savoir-faire for intelligent technologies in next-generation transport systems on the road safety 

front [7], [8], [9], [10]. 

 
Fig 1: Proposed System Architecture 

 

5. Implementation 

 

The system for driver drowsiness detection is not conceptional only but needs to have a strong 

implementation. The actual need for the development of a fatigue-monitoring system, which then serves 

to be real-time and reliable, is underlined more and more under the auspices of road safety and AI-based 

intelligent transportation systems. To have all the nice features of the system and maximize effectiveness 

and efficiency, the proposed system is attempted with an optical hybrid method involving CNN and GA 

optimization. Contradicting classical methods that use few intrusive physiological sensors or inadequate 

eye-tracking approaches, here a real-time non-intrusive visual monitoring approach has been considered, 

thus rendering practical deployment of this system in real vehicles. 
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Data Acquisition and Labeling :  

A system's success is heavily dependent on the quality and diversity of its training data. The available 

drivers' facial images datasets are either collected from publicly available sources or generated from real-

time driving simulators wherein drivers are recorded in both alert and drowsy states. Key facial cues such 

as partial or full closure of eyes, excessive blinking, yawning, and chin dropping may be manually 

annotated or semi-automated with heuristic or auxiliary sensors. A balanced dataset containing enough 

positive (drowsy) and negative (alert) examples is of utmost importance for preventing model bias. 

Besides, environmental conditions have also been considered, from daytime and nighttime driving to 

differing backdrops, as well as the driver's appearance. Such label and sample robustness prevent the 

model from overfitting to certain conditions and rather enable it to learn generic features. From these 

data, different splits for training, validation, and testing allow a sound evaluation of model performance 

at various stages of its development [16], [20]. 

Data Preprocessing  :  

Each image or video frame passes through a highly advanced preprocessing before it winds up into the 

CNN. Initially, a face localization algorithm, for instance, Haar cascades or Multi-task CNN, can be 

applied for facial region localization and cropping. This annuls any force of unnecessary noise 

amplification in a correlated region. The final crop is subsequently resized to ensure that all facial images 

are of a fixed size of 64×64 or 128×128 pixels in all aspects while entering the CNN layers. After this, 

images are converted to grayscale to reduce the computational load immensely [14]. Following this, 

image augmentation may be carried out to strengthen the robustness of the model so as to avoid model 

overfitting. For instance, rotations, brightness adjustments, and horizontal flips may occur so that the 

system learns variations caused by actual-world scenarios of different camera angles, lighting, and driver 

movements [15], [18], [19]. On the other hand, pixel value normalization may allow faster convergence 

during training, thus making training more efficient [17]. 

Designing CNN architecture :   

At the heart of this system is a CNN that is trained to identify whether the driver is sleepy or alert. The 

CNN consists of many layers such as those for convolution, which would extract features from the 

images, those for pooling, which act as downsampling layers, and others for classification, based on fully 

connected networks. In essence, the convolutional layers detect various eye patterns, blinking activities, 

and yawning motions; at the same time, the pooling layers lower the spatial dimensions of the output, 

thereby doing a sort of preserving the important features while avoiding over-learning. Dropout layers 

deactivate randomly a few neurons during training to improve the generalization ability of the model. 

The softmax activation function in the last layer produces probabilities of the class [14], [17]. The CNN 

architecture is yet not fixed: the hyperparameters of the CNN architecture, like the number of layers, filter 

size, stride, dropout rate, etc., are optimized with a Genetic Algorithm so that the model evolves based 

on validation performance toward higher accuracy and efficiency [16], [19]. 

Genetic Algorithm Optimization :   

Genetic algorithms are implemented to enhance CNN design automatically. The engineering method 

starts with a population each generated randomly-unconstrained in natural evolution-fate. Fitness of an 

individual is assessed on the basis of model accuracy and loss from the validation set. Through selection, 

crossover, and mutation, subsequent generations of CNNs are produced. Architectures with the highest 

fitness evolve over several generations until the one that performs best is selected. Thus, human-bias is 

removed, and time is saved otherwise spent manual tuning [16], [17].The parameters used by GA include 

the number of convolution filters, the kernel sizes, numbers of hidden layers, and percentages of dropout. 

Hence, a CNN model is built that is sufficiently accurate with less computational time, thus permitting 

real-time inference on edge devices or in-vehicle processors [18], [21]. In terms of speed and accuracy, 

the final architecture is perfectly balanced for a particular cause, that is detecting driver fatigue. 

Training and Validation :  

After setting the CNN architecture by the Genetic Algorithm, the model is trained with the preprocessed 

data set within the training phase. Here, the model uses categorical cross-entropy as the loss function and 

Adam as the optimizer. The model is trained for several epochs (as an example 30-50) until the process 

reaches convergence, with early stopping preventing overfitting from happening. Batch normalization is 

conducted to smooth out the learning process. The remaining part of the model is experienced in dataset 

splitting into training (70%), validation (15%), and testing (15%) datasets so as to ensure that the model 

also performs commendably on unseen datasets. Evaluation criteria such as accuracy, precision, recall, 

and f1 score are used to measure the capability of the modeling process [14], [15]. Depending on the 



Raparthi Santhosha et al. Driver Drowsiness Detection Based on.......                    1531 

validation outcomes, further refinements such as fine-tuning of the learning rate or enhancements in data 

augmentation can be implemented. After few iterations and cross-validations, the very accurate model is 

found to be capable of inference at speeds admissible for vehicle deployment [19], [20]. 

Real-Time Integration and Alerting :  

After being trained, the fine-tuned CNN model may be integrated into a system that functions in real 

time. This may involve model deployment on hardware configurations such as a Raspberry Pi with a 

camera or an NVIDIA Jetson Nano or any embedded system widely deployed in automotive 

environments. The system captures frames of the driver's face continuously, analyzing and classifying 

each frame within 50 milliseconds [23], [26]. This sequence-based method avoids false positives; if the 

situation has appeared for a transient time (about 3–5 seconds), an alert is triggered. Some alert 

mechanisms could be buzzer sounds, vibration through the seat, or a notification on the dashboard, 

dependent on the system into which it is integrated. Because of their low latency, high responsiveness 

ensures an efficient intervention before any associated accident. However, the system can also check the 

recorded events of drowsiness for further behavioral analysis [24], [21]. 

Comparison and Future Extensions :   

In contrast to traditional drowsiness detection systems using EEG sensors or eye trackers, the system at 

hand is non-intrusive in nature, using vision-based methods, and ideal for quick setups and little 

maintenance. Though various approaches have been explored for temporal behavior modeling, such as 

LSTM auto-encoders and multifractal theory, CNN-GA integration best supports real-time design 

performance with modularity [25], [22]. Further research could involve acquiring additional inputs such 

as steering patterns, driving duration, or even voice change. Transfer learning from large-scale face 

datasets, or the introduction of temporal memory layers (LSTM or GRU) could set the technology up for 

success in complex driving environments [28], [30]. Allowing cloud connectivity for data logging and 

model updates is another attractive capacity for exploration, enhancing further scalability in commercial 

fleets.[31],[32]. 

Deployment Consideration 

The final optimized CNN model is lightweight and suitable for deployment on low power devices like 

Raspberry Pi 4 ,NVIDIA Jetson Nano& Android-based infotainment systems [29],[27]. 

 

 
Fig 2: Driver Fatigue Detection System Hierarchy 

This diagram shows the functioning procedure of a Fatigue Alert System using facial analysis. It begins 

by capturing an image of the driver`s face, which is then dispatched through different detection modules, 

namely: eye detection, face detection, head position analysis, and yawn detection. Each monitoring 

module watches for a particular sign of tiredness or fatigue. The outputs of all these modules are then 

combined to generate a Fatigue Alert once some signs of tiredness or inattentiveness are detected. This 

multifeature approach improves system reliability by very fast real-time analysis of various facial cues to 

warn the driver accurately and timely against possible accidents due to driver fatigue. 

Dataset Description 

For the project of the dissertation, we used the Close Eyes in the Wild (CEW) dataset: a public dataset of 

face images categorized into two classes: open eyes and closed eyes. The dataset was designed to simulate 

real-world, unconstrained scenarios and contained both positive samples (closed eyes) and negative 
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samples (open eyes). It is thus specially arranged for supporting studies in the area of eye state recognition 

and drowsiness detection. For proper training and testing of the proposed model, the whole dataset was 

divided into three subgroups with 70% of data chosen for training, 15% used for validation purposes, and 

15% reserved for testing purposes, so such stratification keeps the data class balance in all subsets. 

Besides, the dataset went through augmentation processes with several forms, such as rotation, horizontal 

flipping, brightness variation, and noise injection, etc. These strategies alleviate class imbalance from the 

original dataset and further benefit the model by simulating different driving and lighting situations. Such 

an augmented dataset enables the convolutional neuron network to better learn general representations 

from unseen data. Since the CEW dataset is limited in size, augmentation is essential to reducing 

overfitting and improving the performance of the model. This preprocessing pipeline, combined with 

further steps, completely supports the maximization of the CNN architectures using the genetic algorithm 

for an accurate yet efficient driver-drowsiness-detection system. 

 

6. Algorithms  

 

This driver drowsiness detection system combines various algorithms across machine learning, deep 

learning, and optimization domains. These algorithms work together to capture facial features, classify 

driver states, and optimize performance for real-time deployment. 

1.Convolutional Neural Network (CNN) 

Convolutional Neural Networks or CNNs are deep learning models that are well suited for image 

recognition tasks. In this study, the CNNs work in detecting driver drowsiness by analyzing facial features 

with regard to eye closure, yawning, and gait from video frames. The spatial features are extracted 

automatically by convolutional layers, while complex fatigue-related patterns in the data are learned. 

Pooling and activation layers ensure dimensionality reduction and improved generalization. By applying 

a Genetic Algorithm to optimize the CNN, it gains further accuracy in real-time detection. Also, its ability 

to learn from raw images makes it suitable for developing an intelligent driver monitoring system. Used 

to automatically extract spatial features from facial images and classify driver state as Alert or Drowsy. 

Key Operations: 

a. Convolution Layer 

Applies a kernel to extract features from the input image: 

zi,j
(l) = ∑ ∑ xi + m, j + n .  wm,n 

(l) + b(l)

k −1 

n = 0

k −1

m = 0

 

 

b. Activation Function (ReLU) 

ai,j
(l)

=  max(0, zi,j
(l)

 

 

c. Pooling Layer (Max Pooling) 

Reduces spatial dimensions: 

pi,j
(l)

=  max { am,n
(l)

 | (m, n) € region }  

 

d. Fully Connected Layer + Softmax 

Produces classification probabilities: 

ŷi =  =  
ezi

∑ ezj
j

 

 e.Loss Function (Binary Cross-Entropy) 

L =  −[ y log (ŷ) + ( 1 − y) log (1 − ŷ )] 
  

2.Genetic Algorithm (GA)   

Genetic Algorithms (GAs), just like natural selection, are optimization techniques. In this project, the GA 

is used in optimizing the architecture and hyperparameters of the CNN for driver drowsiness detection. 

It conducts model selection by applying mating procedures such as selection, crossover, and mutation to 

ensure that the best-performing CNN models survive. Hence, this algorithm evolves CNN configurations 

such that their accuracy in detecting features like eye closure and yawning is successively improved. 

Hence, this improves the model based on the learning experience without performing tedious manual 
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tuning. With this strategy, higher detection accuracy and robustness, and hence effectiveness, have been 

made possible through fatigue monitoring and driver safety applications in real time.Optimizes the CNN 

architecture by tuning hyperparameters like number of layers, filter size, dropout rate, etc. 

Working Steps: 

a. Chromosome Encoding 

Each individual represents a CNN configuration: 

C=[L,F,K,D] 

Where: 

• L: number of layers 

• F: filter sizes 

• K: kernel sizes 

• D: dropout rates 

b. Fitness Function 

Evaluates CNN performance on validation data: 

F(C)=Accuracy val  (CNNC) 

c. Selection 

Choose top-performing chromosomes based on fitness. 

d. Crossover 

Exchange parameters between two parent chromosomes: 

Child=Parent 1 [0 : k] ∪ Parent 2[k :] 

e. Mutation 

Randomly change genes to maintain diversity: 

ci 
′ =  ci  +  δ,   δ~ N(0, σ) 

3. Face Detection Algorithm (Haar Cascade or MTCNN)  

Locates the driver’s face in the frame before classification. 

Process (Haar Cascade): Uses rectangular Haar-like features to identify face regions . Applies AdaBoost 

for feature selection Uses a cascade classifier for detection efficiency.  

MTCNN (Multi-task CNN) provides more robust detection using a pipeline of three CNNs. 

4.Image Preprocessing Algorithms 

Improves input quality and standardization before feeding into CNN. 

Steps :  

Grayscale conversion & Normalization 

xnorm = 
x − u

σ
 

Image resizing (e.g., to 64×64 pixels) 

Data augmentation (rotation, flipping, brightness change) 

5.Softmax Classification :  

Used in the final CNN layer to convert output logits to probabilities: 

ŷi =  =  
ezi

∑ ezj
j

  for i = 1,2 

Where zi is the raw score for class i. 
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Fig 3 : Block Diagram 

 

6.Optimization Algorithm (Adam Optimizer)   

Used during CNN training to update weights efficiently. 

Formula  

Momentum: 

mt = β1 mt−1 + (1−β1) ∇ Lt 

RMSProp: 

vt = β2 vt−1+(1−β2)(∇Lt)2 

Parameter Update: 

θt =  θt−1  −  α .
mt

√vt  +  ϵ
 

 

7.Evaluation Metrics :  

Used to assess model performance. We measure the driver drowsiness detection system concerning four 

major classification metrics: Accuracy, Precision, Recall, and F1-Score. 

Accuracy:  

Accuracy checks the overall correctness; the value is obtained by dividing total correct predictions by 

total samples, providing a general assessment of the model. 

 

Accuracy =
TP + TN

TP +  TN + FP + FN
 

Where: 

• TP = True Positives (drowsy correctly predicted as drowsy) 

• TN = True Negatives (alert correctly predicted as alert) 

• FP = False Positives (alert incorrectly predicted as drowsy) 

• FN = False Negatives (drowsy incorrectly predicted as alert) 

Precision: Precision calculates the fraction of correctly identified drowsy cases among all predicted 

drowsy cases, reducing false alarms. 

 

Precision =  
TP

TP + FP
 

 

Recall: Recall measures the ability of the model to correctly detect the drowsy state to minimize missed 

detections in critical situations. 

Recall =  
TP

TP +  FN
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F1-Score : F-1 Score is the harmonic average of the precision and recall and provides a balanced 

evaluation when the dataset is imbalanced. 

F1 = 2.
Precision⋅Recall

Precision+Recall
 

Together, these metrics provide a full-fledged understanding of the model's performance to differentiate 

between alert and drowsy drivers. In a safety-critical application, it should maintain a high recall, 

balanced amongst the F1-Score, so that a drowsiness alert can be timely and reliable; minimum false 

positives and negatives. 

 

7. Results & Discussion  

 

In this driver drowsiness detection system, the results demonstrate the ability of the system to accurately 

determine the state of the driver with an optimized CNN architecture. The performance metrics of 

accuracy, precision, recall, and F1-score were practically excellent, with an accuracy of up to 91.8%. The 

accuracy and loss graphs across the training epochs illustrate the improvement and convergence of 

learning processes, indicating good learning. The confusion matrix further emphasizes the model's ability 

to classify alert and drowsy correctly, thus avoiding the most critical errors. The summary of these results 

indicates the feasibility for real-time deployment of the system inside vehicles and significantly 

enhancing road safety via timely detection of drowsiness. 

 
Fig 4 : Drowsy (Body Posture) 

The method used for drowsiness detection relied on an optimized Convolutional Neural Network 

architecture refined by a Genetic Algorithm. Fig 4 indicates the correct identification of drowsiness from 

body posture and eye closure, while Fig 5 shows the successful recognition of yawning with open-mouth 

detection. The Genetic Algorithm fine-tuned the parameters of the CNN model so that it could better 

extract features and classify them more correctly. Real-time observation effectively separates alert and 

drowsy states, enhancing road safety. The visual outputs provide validity to the robustness of the model 

for recognizing behaviors in fatigue, establishing the model for practical application into intelligent driver 

assistance systems. 

Good Posture Detection of Drowsiness 

The system identifies slouching or relaxed posture as indicative of drowsiness, implying that the body 

posture module does have the capability of identifying physical cues of fatigue aside from just facial ones. 

Yawn Detection Has High Sensitivity 

The second image confirms the presence of an open-mouth yawn, which is one of the most important 

fatigue signs; it indicates that the mouth detection and classification model shows good accuracy even in 

waking real-time yawn events. 
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Fig 5 : Yawn Detected 

Integration of Multi-Features Improves Dependability 

The system is robustly bolstered by using combined posture, eye, and mouth cues for decision-making. 

By distinguishing one fatigue sign from the other (like yawning versus drowsiness), accuracy in early 

warning is improved and false positives are minimized. 

 
Fig 6  : Performance Metrics 

In the graph , the comparison is made between detection performances with drowsiness as the focus: 

Accuracy, Precision, Recall, and F1-Score. Accuracy measures whether or not detection is correct in 

general. Precision considers true positives put in relation to false positives. Recall refers to the true 

positives considered with respect not false positives. F1-Score is the harmonic mean between Precision 

and Recall, giving one view of the overall detection effectiveness. By showing the metrics side by-side, 

potential strengths and weaknesses can be observed. For instance, high Precision in exchange for low 

Recall implies that basically the system hardly ever claims that an alert driver is asleep but, on the other 

hand, also misses some cases of real drowsiness, which is unacceptable where safety is involved. A well 

balanced good performance means that the detection systems can be considered reliable and can be further 

deployed into driver assistance systems. 
Metrics Value (%) 

Accuracy 91.8 

Precision 92.5 

Recall 90.6 

F1-Score 91.5 

Inference 

Time(ms/frame) 

50 

Table 1 : Performance Metrics 

Table 2 essentially describes the detection accuracy of several fatigue indicators employed to detect 

fatigue in drivers or workers. It compares, with scientific precision, the different physiological or 

behavioral measures, such as the number of eye blinks, heart rate variability, and reaction time, among 

others, in labeling the fatigue levels correctly. From the table, the highest on accuracy and reliability 

range for each indicator is given, which forms the basis for designing the actual fatigue monitoring 

system. As one understands which has a good comparison between detection accuracies, it is possible 

to set priorities for the real-time detection of fatigue and hence ensure safety in situations requiring 

attention, like those in transport and in industry industries. 
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Fatigue Indicator Accuracy (%) 

Eye Closure 92 

Yawning 90 

Head Tilt 88 

Slouched Posture 85 

Combined Detection 93 

Table 2: Detection Accuracy for Different Fatigue Indicators 

 

 
Fig 7 : Model Accuracy vs. Epochs 

 

In the above fig Accuracy measurement against epochs shows how the accuracy of the model improves 

in training during multiple iterations. Accuracy signifies the ratio of driver states classified correctly 

(Alert or Drowsy) out of all predictions made by the system. During early epochs, the accuracy is 

generally low as the model learns some initial patterns from a set of facial images. As training 

progresses, the late increases and gets stabilized at some high point, winning together with convergence, 

where further training does not improve its performance much. This graph may be worth studying for a 

good perspective on the learning behavior and stability of the Convolutional Neural Network (CNN) 

deployed in the driver drowsiness detection system. An accuracy curve rising gradually, with a flat 

plateau afterwards, demonstrates a healthy learning of discriminative features by the model, while one 

which oscillates or saturates early could be a sign of overfitting or underfitting. By keeping track of 

accuracy with time (epochs), one may decide at which point the training should be stopped to obtain the 

highest potential for real-time detection. 

 

 
Fig 8 : Model Loss vs Epochs 

Loss vs epochs is a demonstration of model training in which the value of the loss function is recorded 

for each epoch. Mathematically, loss gets measured by taking how far away the predictions are from the 

actual labels; conversely, the less the loss value, the better the situation is viewed. At the very beginning 

of training, the value of loss tends to be higher because the CNN architecture is adjusting itself in some 

ways, and this downward trend must continue until final predictions generation takes place. Ideally, a 

loss curve that reduces itself smoothly suggests good optimization and convergence of the model. Any 
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spikes, or periods that the loss curve for some reasons just does not want to go down, may imply some 

issues with the learning process, such as sudden inappropriate learning rates or insufficient data feeding 

into the system. For driver drowsiness detection research, it is important to keep the loss at its minimum, 

thus avoiding misclassification of fatigue states. Monitoring of loss against accuracy ensures that the 

model is actually mainstreaming toward the well and is generalizing and not overfitting into the training 

data, making it nonreliable when implemented for actual real-time performance. 

 

 
Fig 9 : Drowsiness Detection Outcome Distribution 

The pie chart displays the proportion of instances in which drowsiness was detected versus not detected 

in the monitoring system. One slice reflects the percentage of times signs of drowsiness had been 

successfully detected by the system, while the other slice represents the unrecorded instances where 

drowsiness was not detected. This visualization emphasizes the overall efficacy of the system in real-

time monitoring. The greater the "Detected" portion, the better the system was considered at spotting 

fatigue at the earliest stage to avoid an accident. The opposite applies to the "Not Detected" portion: this 

means that the detection algorithms need to be improved in reliability and accuracy to provide better-

safety prompting. 

 

 
Fig 10 : Confusion Matrix 

The confusion matrix provides classification statistics that are a richer detail level of the classification 

results produced by the model by displaying rates of true positives, true negatives, false positives, and 

false negatives for alert and drowsy classes. Any drowsy instance found correctly by the system will be 

a true positive, and if a particular alert instance is detected correctly, it will be termed as a true negative. 

False positives will be the cases where alert drivers are classified as drowsy, while false negatives will 

be failures in detecting drowsiness. This matrix is very important in grasping which classification errors 

are being made by our model. In cases of the driver drowsiness detection, these false negatives must be 

kept at the lowest level so as not to miss out on crucial warnings from fatigue. This matrix will be used 

to refine and develop the model since it reveals the kinds of errors made most often, hence, designing 

the development ahead. This matrix will further complement the global metrics responsible for assessing 

model performance from the real-world standpoint. 
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Key Observations : 

An optimized CNN in the proposed system guaranteed high precision in detecting drowsiness indices 

such as long eye closure, yawning, and slouching. The major improvement in this was via GA 

optimization of CNN architecture parameters such as the number of layers, the number of filters, and 

activation functions used. This configuration allowed better feature extraction and improved 

classification performance against the traditional CNN techniques. Real-time analysis was consistent 

and reliable, with good detection rates under low light and varying head orientations. It could distinguish 

normal blinking from fatiguing patterns such as micro-sleeps and yawns. Particularly high rates of 

accurately detecting yawns came from the ability of the model to easily recognize the open-mouth 

pattern from the facial landmarks.  Adding posture analysis brings yet another check against false 

positives. Here, the model runs with negligible latency, making it viable as a real-time system. The 

model adapts well to different subjects and environments, which shows high generalization ability. 

Therefore, the GA-optimized CNN model is one of the best, adaptive systems for detecting driver 

drowsiness, which translates to safer driving and the foundation for more intelligent in-vehicle safety 

systems. 

 

8. Challenges and Limitations 

 

1. Variability in Facial Features and Expressions :  One of the biggest problems is the variability in facial 

features and expressions from one person to another. Features such as skin tone, facial hair, makeup, 

aging, and the use of glasses or an occluding mask are some of the factors that may reduce the accuracy 

of face feature detection. The CNN, being a strong one, might occasionally misread expressions when 

confronted with such variations, thereby becoming prone to false positives or missed detections. This 

diversity implies providing a more heterogeneous training set or involving adaptive learning 

mechanisms that allow for user generalization with respect to demographics and facial variabilities. 

2. Sensitivity to Lighting Conditions : Lighting conditions have important negative effects for computer 

vision-based detection methods. Extreme conditions like-driving at night with glare from headlights or 

dim light inside the cabin all act as obstacles against drowsiness detection. The overexposed or 

underexposed frames make it rather difficult for a CNN to focus on relevant features like eye movement 

or mouth opening. The use of histogram equalization, one of the preprocessing measures, may improve 

contrasts to an extent; however, it cannot work for all real-time lighting variations. Use of an infrared 

camera and/or adaptive brightness control could be a solution to this problem. 

3. Computational Requirements for Real-time Detection 

The hidden cameras require the continuous processing of live video streams for real-time driver 

monitoring, which in turn demands a lot of computing power. CNNs tend to be considered deeper and 

more complex, making them heavy in computational requirements, especially when optimized by 

Genetic Algorithms. Running these models on embedded systems or on processors embedded in vehicles 

could perhaps result in latencies or power consumption issues. Model-level optimization through 

pruning or quantization may perhaps alleviate computational pressure to some extent, but that too will 

come at the cost of detection. Hence, keeping in view the performance and efficiency in commercial 

automotive environments stand as the bottleneck to deploying this system.  

4. Subtle or Infrequent Drowsiness Indicators 

For some drivers, the signs of drowsiness are fine: half eye closure for a second, a barely there yawn, a 

subtle posture change. All these are extremely hard to capture with consistency. The CNN may miss 

these micro-signals, especially when they occur rarely or for brief durations. This will give rise to a 

false-negative situation where drowsiness would have gone undetected. Secondly, the "noise" might 

also come from the outside-factors: vibrations through the car or face-movements that have a rationale 

not linked to fatigue. Incorporating multimodal inputs in the system-e.g., EEG, heart-rate, or steering-

patterns-may succeed in pinpointing such subtle signs reliably. 

 

9. Conclusion 

 

In conclusion , the major stride in intelligent automation toward road safety was the evolution of a driver 

drowsiness detection system using a Convolutional Neural Network (CNN), with Genetic Algorithms 

(GA) as an optimization technique. In this project, deep learning techniques have been presented as a 

feasible and potent alternative for spotting facial cues of utmost importance when it comes to fatigue: eye 
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closure and yawning being the common signs of drowsiness. On one hand, the CNNs could pick and 

learn hierarchical spatial features from facial images with extreme accuracy. But on the other, CNNs' 

performance varies greatly depending upon the architectural design and parameters chosen for its 

implementation. To ease the burden of manual tuning, a Genetic Algorithm was applied for parameter 

selection including the number of layers, filter sizes, and dropout rates, thus resulting in improved 

classification accuracy of the model, improved generalizations with less overfitting. The working system 

implemented, using the fine-tuned deep learning model, achieved a 91.8% accuracy, while its inference 

time took about 50 milliseconds per frame which offers real-time applications in vehicle environments. 

In addition, the evaluation metrics for the system are precision, recall, and F1-score, which have indicated 

the system's ability to reliably and robustly determine alert states from drowsy ones. Evolutionary 

computation and deep learning integration make a very good complement, allowing for the automated 

design of very efficient models with minimum human intervention. The real-time nature of the system, 

combined with the high level of accuracy, seems to bring feasibility to modern ADAS. To conclude, 

within the scope of this project, a reliable, accurate, and real-time driver drowsiness detection system has 

been successfully addressed. It has proven that CNNs, when combined with GA for optimizing the model, 

really do work and that intelligent algorithms indeed reduce human error on the road.  

 

10. Future Scope 

 

The present driver drowsiness detection system demonstrates a very high accuracy and real-time 

implementation; however, many possibilities exist for further enhancement and extension. There is room 

to implement advanced and multivariate systems that fare well under real-life driving conditions in 

tandem with evolving automobile technology. Integration of physiological signals such as EEGs, EOGs, 

and heart-rate monitoring appears to be the most promising pathway. Nevertheless, biosignals indicate 

internal states that might not be mapped by facial analysis, particularly during an early stage of fatigue. 

From this perspective, the fusion of these biosignals with facial features may greatly enhance the 

performance of detection in respect of accuracy as well as robustness. One may, in addition, want to 

consider a temporal analysis framework with RNNs or LSTMs in the future. In contrast to static images, 

these networks can capture time-bound drowsiness patterns increasing contextual awareness; for instance, 

one may be blinking for longer than usual or yawning more frequently by time. These transfer learning 

and domain adaptation are intriguing researches awaiting exploration. Models pretrained with large-scale 

face datasets may be fine-tuned into smaller domain-specific drowsiness databases so as to maximize 

performance under different lighting, camera angled, and driver appearances to enhance the 

generalization power across the different users and environment.  In other words, user calibration means 

that one can personalize the system to adapt to that one person's normal behavior patterns, thereby 

reducing false alarms.  Another future path could be to build upon this system the connectivity of IoT for 

drowsiness alerting to nearby vehicles, control centers, or family members. In that way, the network 

solution shall make traffic safer on a larger scale, especially for commercial and public transport.  

Eventually, it could become a fully fledged active safety system if linked to an audio feedback system, 

seat vibration-type attraction systems, or an automated vehicle response of slowing the car down once 

identified with drowsiness. To conclude, this project is put forward as a base for the intelligent monitoring 

of fatigue, on account of subsequent developments; it might morph into a complete driver assistance 

module for future-generation smart cars. 
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